Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
School of Medicine, Tsinghua University, Beijing 100084, China.
Dev Cell. 2014 Sep 8;30(5):625-36. doi: 10.1016/j.devcel.2014.07.017. Epub 2014 Aug 21.
Conditional gene knockout animals are valuable tools for studying the mechanisms underlying cell and developmental biology. We developed a conditional knockout strategy by spatiotemporally manipulating the expression of an RNA-guided DNA endonuclease, CRISPR-Cas9, in Caenorhabditis elegans somatic cell lineages. We showed that this somatic CRISPR-Cas9 technology provides a quick and efficient approach to generate conditional knockouts in various cell types at different developmental stages. Furthermore, we demonstrated that this method outperforms our recently developed somatic TALEN technique and enables the one-step generation of multiple conditional knockouts. By combining these techniques with live-cell imaging, we showed that an essential embryonic gene, Coronin, which is associated with human neurobehavioral dysfunction, regulates actin organization and cell morphology during C. elegans postembryonic neuroblast migration and neuritogenesis. We propose that the somatic CRISPR-Cas9 platform is uniquely suited for conditional gene editing-based biomedical research.
条件性基因敲除动物是研究细胞和发育生物学机制的重要工具。我们通过时空操纵 RNA 引导的 DNA 内切酶 CRISPR-Cas9 在秀丽隐杆线虫体细胞谱系中的表达,开发了一种条件性基因敲除策略。我们表明,这种体细胞 CRISPR-Cas9 技术为在不同发育阶段的各种细胞类型中快速有效地生成条件性基因敲除提供了一种方法。此外,我们证明这种方法优于我们最近开发的体细胞 TALEN 技术,并能够一步生成多个条件性基因敲除。通过将这些技术与活细胞成像相结合,我们表明,一个与人类神经行为功能障碍相关的重要胚胎基因 Coronin 通过调节肌动蛋白组织和细胞形态来调节秀丽隐杆线虫胚胎后神经母细胞迁移和神经突生成。我们提出,体细胞 CRISPR-Cas9 平台非常适合基于条件性基因编辑的生物医学研究。