Gomez-Sanchez Elise P
Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
Steroids. 2014 Dec;91:20-31. doi: 10.1016/j.steroids.2014.08.014.
Mineralocorticoid receptors (MR) mediate diverse functions supporting osmotic and hemodynamic homeostasis, response to injury and inflammation, and neuronal changes required for learning and memory. Inappropriate MR activation in kidneys, heart, vessels, and brain hemodynamic control centers results in cardiovascular and renal pathology and hypertension. MR binds aldosterone, cortisol and corticosterone with similar affinity, while the glucocorticoid receptor (GR) has less affinity for cortisol and corticosterone. As glucocorticoids are more abundant than aldosterone, aldosterone activates MR in cells co-expressing enzymes with 11β-hydroxydehydrogenase activity to inactivate them. MR and GR co-expressed in the same cell interact at the molecular and functional level and these functions may be complementary or opposing depending on the cell type. Thus the balance between MR and GR expression and activation is crucial for normal function. Where 11β-hydroxydehydrogenase 2 (11β-HSD2) that inactivates cortisol and corticosterone in aldosterone target cells of the kidney and nucleus tractus solitarius (NTS) is not expressed, as in most neurons, MR are activated at basal glucocorticoid concentrations, GR at stress concentrations. An exception may be pre-autonomic neurons of the PVN which express MR and 11β-HSD1 in the absence of hexose-6-phosphate dehydrogenase required to generate the requisite cofactor for reductase activity, thus it acts as a dehydrogenase. MR antagonists, valuable adjuncts to the treatment of cardiovascular disease, also inhibit MR in the brain that are crucial for memory formation and exacerbate detrimental effects of excessive GR activation on cognition and mood. 11β-HSD1 inhibitors combat metabolic and cognitive diseases related to glucocorticoid excess, but may exacerbate MR action where 11β-HSD1 acts as a dehydrogenase, while non-selective 11β-HSD1&2 inhibitors cause injurious disruption of MR hemodynamic control. MR functions in the brain are multifaceted and optimal MR:GR activity is crucial. Therefore selectively targeting down-stream effectors of MR specific actions may be a better therapeutic goal.
盐皮质激素受体(MR)介导多种功能,支持渗透压和血流动力学稳态、对损伤和炎症的反应以及学习和记忆所需的神经元变化。在肾脏、心脏、血管和脑血流动力学控制中心,MR的不适当激活会导致心血管和肾脏病变以及高血压。MR以相似的亲和力结合醛固酮、皮质醇和皮质酮,而糖皮质激素受体(GR)对皮质醇和皮质酮的亲和力较低。由于糖皮质激素比醛固酮更丰富,醛固酮在共表达具有11β-羟基脱氢酶活性的酶的细胞中激活MR,使其失活。在同一细胞中共表达的MR和GR在分子和功能水平上相互作用,这些功能可能根据细胞类型互补或相反。因此,MR和GR表达与激活之间的平衡对于正常功能至关重要。在肾脏和孤束核(NTS)的醛固酮靶细胞中,使皮质醇和皮质酮失活的11β-羟基脱氢酶2(11β-HSD2)不表达,如在大多数神经元中一样,MR在基础糖皮质激素浓度下被激活,GR在应激浓度下被激活。一个例外可能是室旁核的自主神经前神经元,其在缺乏为还原酶活性产生必需辅因子所需的己糖-6-磷酸脱氢酶的情况下表达MR和11β-HSD1,因此它起脱氢酶的作用。MR拮抗剂是心血管疾病治疗的重要辅助药物,也会抑制大脑中对记忆形成至关重要的MR,并加剧GR过度激活对认知和情绪的有害影响。11β-HSD1抑制剂可对抗与糖皮质激素过多相关的代谢和认知疾病,但在11β-HSD1起脱氢酶作用的情况下可能会加剧MR的作用,而非选择性的11β-HSD1&2抑制剂会导致MR血流动力学控制的有害破坏。MR在大脑中的功能是多方面的,最佳的MR:GR活性至关重要。因此,选择性地靶向MR特定作用的下游效应器可能是一个更好的治疗目标。