Suppr超能文献

配对染色质免疫沉淀测序(ChIP-seq)实验的差异基序富集分析

Differential motif enrichment analysis of paired ChIP-seq experiments.

作者信息

Lesluyes Tom, Johnson James, Machanick Philip, Bailey Timothy L

机构信息

Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, 4072 Brisbane, Australia.

出版信息

BMC Genomics. 2014 Sep 2;15(1):752. doi: 10.1186/1471-2164-15-752.

Abstract

BACKGROUND

Motif enrichment analysis of transcription factor ChIP-seq data can help identify transcription factors that cooperate or compete. Previously, little attention has been given to comparative motif enrichment analysis of pairs of ChIP-seq experiments, where the binding of the same transcription factor is assayed under different conditions. Such comparative analysis could potentially identify the distinct regulatory partners/competitors of the assayed transcription factor under different conditions or at different stages of development.

RESULTS

We describe a new methodology for identifying sequence motifs that are differentially enriched in one set of DNA or RNA sequences relative to another set, and apply it to paired ChIP-seq experiments. We show that, using paired ChIP-seq data for a single transcription factor, differential motif enrichment analysis identifies all the known key transcription factors involved in the transformation of non-cancerous immortalized breast cells (MCF10A-ER-Src cells) into cancer stem cells whereas non-differential motif enrichment analysis does not. We also show that differential motif enrichment analysis identifies regulatory motifs that are significantly enriched at constrained locations within the bound promoters, and that these motifs are not identified by non-differential motif enrichment analysis. Our methodology differs from other approaches in that it leverages both comparative enrichment and positional enrichment of motifs in ChIP-seq peak regions or in the promoters of genes bound by the transcription factor.

CONCLUSIONS

We show that differential motif enrichment analysis of paired ChIP-seq experiments offers biological insights not available from non-differential analysis. In contrast to previous approaches, our method detects motifs that are enriched in a constrained region in one set of sequences, but not enriched in the same region in the comparative set. We have enhanced the web-based CentriMo algorithm to allow it to perform the constrained differential motif enrichment analysis described in this paper, and CentriMo's on-line interface (http://meme.ebi.edu.au) provides dozens of databases of DNA- and RNA-binding motifs from a full range of organisms. All data and output files presented here are available at http://research.imb.uq.edu.au/t.bailey/supplementary\_data/Lesluyes2014.

摘要

背景

转录因子染色质免疫沉淀测序(ChIP-seq)数据的基序富集分析有助于识别协同或竞争的转录因子。以前,对于成对的ChIP-seq实验的比较基序富集分析关注较少,在这种实验中,相同转录因子的结合在不同条件下进行检测。这种比较分析有可能识别出在不同条件下或发育的不同阶段所检测转录因子的不同调控伙伴/竞争者。

结果

我们描述了一种用于识别相对于另一组在一组DNA或RNA序列中差异富集的序列基序的新方法,并将其应用于成对的ChIP-seq实验。我们表明,使用单个转录因子的成对ChIP-seq数据,差异基序富集分析能够识别出参与非癌永生化乳腺细胞(MCF10A-ER-Src细胞)向癌症干细胞转化的所有已知关键转录因子,而非差异基序富集分析则不能。我们还表明,差异基序富集分析能够识别在结合启动子内的受限位置显著富集的调控基序,并且这些基序不能通过非差异基序富集分析识别。我们的方法与其他方法的不同之处在于,它利用了ChIP-seq峰区域或转录因子结合基因的启动子中基序的比较富集和位置富集。

结论

我们表明,成对ChIP-seq实验的差异基序富集分析提供了非差异分析无法获得的生物学见解。与以前的方法相比,我们的方法检测到在一组序列的受限区域中富集但在比较组的相同区域中不富集的基序。我们增强了基于网络的CentriMo算法,使其能够执行本文所述的受限差异基序富集分析,并且CentriMo的在线界面(http://meme.ebi.edu.au)提供了来自各种生物体的数十个DNA和RNA结合基序数据库。本文展示的所有数据和输出文件可在http://research.imb.uq.edu.au/t.bailey/supplementary_data/Lesluyes2014获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7fb/4167127/33430d430bbd/12864_2014_6441_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验