Suppr超能文献

髓系细胞在HIV-1与宿主相互作用中的作用。

Role of myeloid cells in HIV-1-host interplay.

作者信息

Stevenson Mario

机构信息

Department of Medicine, University of Miami Medical School, Miami, FL, USA,

出版信息

J Neurovirol. 2015 Jun;21(3):242-8. doi: 10.1007/s13365-014-0281-3. Epub 2014 Sep 19.

Abstract

The AIDS research field has embarked on a bold mission to cure HIV-1-infected individuals of the virus. To do so, scientists are attempting to identify the reservoirs that support viral persistence in patients on therapy, to understand how viral persistence is regulated and to come up with strategies that interrupt viral persistence and that eliminate the viral reservoirs. Most of the attention regarding the cure of HIV-1 infection has focused on the CD4+ T cell reservoir. Investigators are developing tools to probe the CD4+ T cell reservoirs as well as in vitro systems that provide clues on how to perturb them. By comparison, the myeloid cell, and in particular, the macrophage has received far less attention. As a consequence, there is very little understanding as to the role played by myeloid cells in viral persistence in HIV-1-infected individuals on suppressive therapy. As such, should myeloid cells constitute a viral reservoir, unique strategies may be required for their elimination. This article will overview research that is examining the role of macrophage in virus-host interplay and will discuss features of this interplay that could impact efforts to eliminate myeloid cell reservoirs.

摘要

艾滋病研究领域已开启一项大胆使命,即治愈感染了HIV-1的个体。为此,科学家们正试图确定在接受治疗的患者体内支持病毒持续存在的储存库,了解病毒持续存在是如何被调控的,并想出中断病毒持续存在及消除病毒储存库的策略。关于治愈HIV-1感染的大部分关注都集中在CD4+ T细胞储存库上。研究人员正在开发探测CD4+ T细胞储存库的工具以及提供如何干扰这些储存库线索的体外系统。相比之下,髓样细胞,尤其是巨噬细胞受到的关注要少得多。因此,对于髓样细胞在接受抑制性治疗的HIV-1感染个体的病毒持续存在中所起的作用,人们了解甚少。倘若髓样细胞构成一个病毒储存库,那么可能需要独特的策略来消除它们。本文将概述正在研究巨噬细胞在病毒与宿主相互作用中作用的研究,并将讨论这种相互作用中可能影响消除髓样细胞储存库努力的特征。

相似文献

1
Role of myeloid cells in HIV-1-host interplay.
J Neurovirol. 2015 Jun;21(3):242-8. doi: 10.1007/s13365-014-0281-3. Epub 2014 Sep 19.
3
Irreversible Loss of HIV-1 Proviral Competence in Myeloid Cells upon Suppression of NF-κB Activity.
J Virol. 2022 Jun 22;96(12):e0048422. doi: 10.1128/jvi.00484-22. Epub 2022 May 23.
5
Attacking the HIV reservoir from the immune and viral perspective.
Curr HIV/AIDS Rep. 2013 Mar;10(1):33-41. doi: 10.1007/s11904-012-0150-8.
6
HIV-1 transcriptional regulation in the central nervous system and implications for HIV cure research.
J Neurovirol. 2015 Jun;21(3):290-300. doi: 10.1007/s13365-014-0271-5. Epub 2014 Jul 25.
7
HIV reservoirs and strategies for eradication.
Curr HIV/AIDS Rep. 2012 Mar;9(1):5-15. doi: 10.1007/s11904-011-0108-2.
8
Host and Viral Factors Influencing Interplay between the Macrophage and HIV-1.
J Neuroimmune Pharmacol. 2019 Mar;14(1):33-43. doi: 10.1007/s11481-018-9795-4. Epub 2018 Jul 11.
9
HIV reservoirs: pathogenesis and obstacles to viral eradication and cure.
AIDS. 2012 Jun 19;26(10):1261-8. doi: 10.1097/QAD.0b013e328353f3f1.
10
Increased T cell trafficking as adjunct therapy for HIV-1.
PLoS Comput Biol. 2018 Mar 2;14(3):e1006028. doi: 10.1371/journal.pcbi.1006028. eCollection 2018 Mar.

引用本文的文献

1
Cutting edge strategies for screening of novel anti-HIV drug candidates against HIV infection: A concise overview of cell based assays.
Heliyon. 2023 May 5;9(5):e16027. doi: 10.1016/j.heliyon.2023.e16027. eCollection 2023 May.
2
S100A8-mediated metabolic adaptation controls HIV-1 persistence in macrophages in vivo.
Nat Commun. 2022 Oct 11;13(1):5956. doi: 10.1038/s41467-022-33401-x.
3
Challenges and Opportunities of Therapies Targeting Early Life Immunity for Pediatric HIV Cure.
Front Immunol. 2022 Jul 13;13:885272. doi: 10.3389/fimmu.2022.885272. eCollection 2022.
4
Neuroimmunology of CNS HIV Infection: A Narrative Review.
Front Neurol. 2022 Jun 14;13:843801. doi: 10.3389/fneur.2022.843801. eCollection 2022.
5
Cell-to-Cell Spreading of HIV-1 in Myeloid Target Cells Escapes SAMHD1 Restriction.
mBio. 2019 Nov 19;10(6):e02457-19. doi: 10.1128/mBio.02457-19.
6
Advances toward Curing HIV-1 Infection in Tissue Reservoirs.
J Virol. 2020 Jan 17;94(3). doi: 10.1128/JVI.00375-19.
7
The Differential Anti-HIV Effect of a New Humic Substance-Derived Preparation in Diverse Cells of the Immune System.
Acta Naturae. 2019 Apr-Jun;11(2):68-76. doi: 10.32607/20758251-2019-11-2-68-76.
8
HIV-1 restriction by endogenous APOBEC3G in the myeloid cell line THP-1.
J Gen Virol. 2019 Jul;100(7):1140-1152. doi: 10.1099/jgv.0.001276. Epub 2019 May 30.
10
Establishment of latent HIV-1 reservoirs: what do we really know?
J Virus Erad. 2019 Jan 1;5(1):3-9. doi: 10.1016/S2055-6640(20)30275-2.

本文引用的文献

1
Cancer immunology. Identifying the infiltrators.
Science. 2014 May 23;344(6186):801-2. doi: 10.1126/science.1255117.
2
HIV-1 latency in monocytes/macrophages.
Viruses. 2014 Apr 22;6(4):1837-60. doi: 10.3390/v6041837.
3
Cellular and Biochemical Mechanisms of the Retroviral Restriction Factor SAMHD1.
ISRN Biochem. 2013 Jul 7;2013. doi: 10.1155/2013/728392.
4
Small alveolar macrophages are infected preferentially by HIV and exhibit impaired phagocytic function.
Mucosal Immunol. 2014 Sep;7(5):1116-26. doi: 10.1038/mi.2013.127. Epub 2014 Jan 29.
5
Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues.
Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2307-12. doi: 10.1073/pnas.1318249111. Epub 2014 Jan 27.
8
Therapy for latent HIV-1 infection: the role of histone deacetylase inhibitors.
Antivir Chem Chemother. 2014 Jan 29;23(4):145-9. doi: 10.3851/IMP2551.
9
Quantification of entry phenotypes of macrophage-tropic HIV-1 across a wide range of CD4 densities.
J Virol. 2014 Feb;88(4):1858-69. doi: 10.1128/JVI.02477-13. Epub 2013 Dec 4.
10
An integrated overview of HIV-1 latency.
Cell. 2013 Oct 24;155(3):519-29. doi: 10.1016/j.cell.2013.09.044.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验