Suppr超能文献

识别与靶向白血病干细胞:急性髓系白血病的治愈之路。

Identification and targeting leukemia stem cells: The path to the cure for acute myeloid leukemia.

作者信息

Zhou Jianbiao, Chng Wee-Joo

机构信息

Jianbiao Zhou, Wee-Joo Chng, Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore.

出版信息

World J Stem Cells. 2014 Sep 26;6(4):473-84. doi: 10.4252/wjsc.v6.i4.473.

Abstract

Accumulating evidence support the notion that acute myeloid leukemia (AML) is organized in a hierarchical system, originating from a special proportion of leukemia stem cells (LSC). Similar to their normal counterpart, hematopoietic stem cells (HSC), LSC possess self-renewal capacity and are responsible for the continued growth and proliferation of the bulk of leukemia cells in the blood and bone marrow. It is believed that LSC are also the root cause for the treatment failure and relapse of AML because LSC are often resistant to chemotherapy. In the past decade, we have made significant advancement in identification and understanding the molecular biology of LSC, but it remains a daunting task to specifically targeting LSC, while sparing normal HSC. In this review, we will first provide a historical overview of the discovery of LSC, followed by a summary of identification and separation of LSC by either cell surface markers or functional assays. Next, the review will focus on the current, various strategies for eradicating LSC. Finally, we will highlight future directions and challenges ahead of our ultimate goal for the cure of AML by targeting LSC.

摘要

越来越多的证据支持这样一种观点,即急性髓系白血病(AML)是由一个分层系统构成的,起源于特定比例的白血病干细胞(LSC)。与它们的正常对应物造血干细胞(HSC)相似,LSC具有自我更新能力,并负责血液和骨髓中大量白血病细胞的持续生长和增殖。据信,LSC也是AML治疗失败和复发的根本原因,因为LSC通常对化疗具有抗性。在过去十年中,我们在识别和理解LSC的分子生物学方面取得了重大进展,但特异性靶向LSC同时保留正常HSC仍然是一项艰巨的任务。在这篇综述中,我们将首先对LSC的发现进行历史概述,然后总结通过细胞表面标志物或功能测定来识别和分离LSC的方法。接下来,综述将聚焦于当前根除LSC的各种策略。最后,我们将强调在通过靶向LSC实现治愈AML这一最终目标之前的未来方向和挑战。

相似文献

1
Identification and targeting leukemia stem cells: The path to the cure for acute myeloid leukemia.
World J Stem Cells. 2014 Sep 26;6(4):473-84. doi: 10.4252/wjsc.v6.i4.473.
3
Leukemia Stem Cell Release From the Stem Cell Niche to Treat Acute Myeloid Leukemia.
Front Cell Dev Biol. 2020 Jul 9;8:607. doi: 10.3389/fcell.2020.00607. eCollection 2020.
4
Leukemic stem cell signatures in Acute myeloid leukemia- targeting the Guardians with novel approaches.
Stem Cell Rev Rep. 2022 Jun;18(5):1756-1773. doi: 10.1007/s12015-022-10349-5. Epub 2022 Mar 28.
5
6
Identifying leukemia stem cells--is it feasible and does it matter?
Cancer Lett. 2013 Sep 10;338(1):10-4. doi: 10.1016/j.canlet.2012.07.014. Epub 2012 Jul 20.
7
Cancer stem cells in hematological disorders: current and possible new therapeutic approaches.
Curr Pharm Biotechnol. 2011 Feb 1;12(2):217-25. doi: 10.2174/138920111794295747.
10
Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker.
Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):5009-14. doi: 10.1073/pnas.1100551108. Epub 2011 Mar 7.

引用本文的文献

1
Unveiling the potential of CLL-1: a promising target for AML therapy.
Biomark Res. 2025 Feb 12;13(1):28. doi: 10.1186/s40364-025-00738-6.
2
FHL1 as a prognostic biomarker and therapeutic target in acute promyelocytic leukaemia.
Discov Oncol. 2025 Jan 19;16(1):59. doi: 10.1007/s12672-025-01738-6.
3
Recent advancements in biomarkers, therapeutics, and associated challenges in acute myeloid leukemia.
Ann Hematol. 2024 Nov;103(11):4375-4400. doi: 10.1007/s00277-024-05963-x. Epub 2024 Aug 29.
4
Unveiling novel insights in acute myeloid leukemia through single-cell RNA sequencing.
Front Oncol. 2024 Apr 22;14:1365330. doi: 10.3389/fonc.2024.1365330. eCollection 2024.
6
Immunotherapy in leukaemia.
Acta Biochim Biophys Sin (Shanghai). 2023 Jun 2;55(6):974-987. doi: 10.3724/abbs.2023101.
7
Exploring the Metabolic Landscape of AML: From Haematopoietic Stem Cells to Myeloblasts and Leukaemic Stem Cells.
Front Oncol. 2022 Feb 10;12:807266. doi: 10.3389/fonc.2022.807266. eCollection 2022.
8
Clinical relevance of proteomic profiling in pediatric acute myeloid leukemia: a Children's Oncology Group study.
Haematologica. 2022 Oct 1;107(10):2329-2343. doi: 10.3324/haematol.2021.279672.
9
CD123-Targeted Nano-Curcumin Molecule Enhances Cytotoxic Efficacy in Leukemic Stem Cells.
Nanomaterials (Basel). 2021 Nov 5;11(11):2974. doi: 10.3390/nano11112974.
10
Systematic Construction and Validation of an RNA-Binding Protein-Associated Prognostic Model for Acute Myeloid Leukemia.
Front Genet. 2021 Sep 24;12:715840. doi: 10.3389/fgene.2021.715840. eCollection 2021.

本文引用的文献

2
Targeting of acute myeloid leukemia in vitro and in vivo with an anti-CD123 mAb engineered for optimal ADCC.
Leukemia. 2014 Nov;28(11):2213-21. doi: 10.1038/leu.2014.128. Epub 2014 Apr 7.
3
Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells.
Blood. 2014 Apr 10;123(15):2343-54. doi: 10.1182/blood-2013-09-529537. Epub 2014 Mar 4.
5
CD 123 is a membrane biomarker and a therapeutic target in hematologic malignancies.
Biomark Res. 2014 Feb 10;2(1):4. doi: 10.1186/2050-7771-2-4.
6
Tim-3: an activation marker and activation limiter of innate immune cells.
Front Immunol. 2013 Dec 10;4:449. doi: 10.3389/fimmu.2013.00449.
7
Chimeric antigen receptor therapy for cancer.
Annu Rev Med. 2014;65:333-47. doi: 10.1146/annurev-med-060512-150254. Epub 2013 Nov 20.
8
Interleukin-2 and STAT5 in regulatory T cell development and function.
JAKSTAT. 2013 Jan 1;2(1):e23154. doi: 10.4161/jkst.23154.
10
BCL-2 inhibition with ABT-737 prolongs survival in an NRAS/BCL-2 mouse model of AML by targeting primitive LSK and progenitor cells.
Blood. 2013 Oct 17;122(16):2864-76. doi: 10.1182/blood-2012-07-445635. Epub 2013 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验