Suppr超能文献

包含糖尿病足溃疡来源成纤维细胞的三维人体组织模型模拟了慢性伤口的体内特征。

Three-dimensional human tissue models that incorporate diabetic foot ulcer-derived fibroblasts mimic in vivo features of chronic wounds.

作者信息

Maione Anna G, Brudno Yevgeny, Stojadinovic Olivera, Park Lara K, Smith Avi, Tellechea Ana, Leal Ermelindo C, Kearney Cathal J, Veves Aristidis, Tomic-Canic Marjana, Mooney David J, Garlick Jonathan A

机构信息

1 Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University , Boston, Massachusetts.

出版信息

Tissue Eng Part C Methods. 2015 May;21(5):499-508. doi: 10.1089/ten.TEC.2014.0414. Epub 2015 Mar 31.

Abstract

Diabetic foot ulcers (DFU) are a major, debilitating complication of diabetes mellitus. Unfortunately, many DFUs are refractory to existing treatments and frequently lead to amputation. The development of more effective therapies has been hampered by the lack of predictive in vitro methods to investigate the mechanisms underlying impaired healing. To address this need for realistic wound-healing models, we established patient-derived fibroblasts from DFUs and site-matched controls and used them to construct three-dimensional (3D) models of chronic wound healing. Incorporation of DFU-derived fibroblasts into these models accurately recapitulated the following key aspects of chronic ulcers: reduced stimulation of angiogenesis, increased keratinocyte proliferation, decreased re-epithelialization, and impaired extracellular matrix deposition. In addition to reflecting clinical attributes of DFUs, the wound-healing potential of DFU fibroblasts demonstrated in this suite of models correlated with in vivo wound closure in mice. Thus, the reported panel of 3D DFU models provides a more biologically relevant platform for elucidating the cell-cell and cell-matrix-related mechanisms responsible for chronic wound pathogenesis and may improve translation of in vitro findings into efficacious clinical applications.

摘要

糖尿病足溃疡(DFU)是糖尿病的一种主要的、使人衰弱的并发症。不幸的是,许多DFU对现有治疗方法无效,并且常常导致截肢。由于缺乏用于研究愈合受损潜在机制的预测性体外方法,更有效疗法的开发受到了阻碍。为了满足对现实伤口愈合模型的这一需求,我们从DFU和部位匹配的对照中建立了患者来源的成纤维细胞,并使用它们构建慢性伤口愈合的三维(3D)模型。将DFU来源的成纤维细胞纳入这些模型准确地再现了慢性溃疡的以下关键方面:血管生成刺激减少、角质形成细胞增殖增加、再上皮化减少以及细胞外基质沉积受损。除了反映DFU的临床特征外,在这组模型中展示的DFU成纤维细胞的伤口愈合潜力与小鼠体内伤口闭合相关。因此,所报道的3D DFU模型组为阐明负责慢性伤口发病机制的细胞-细胞和细胞-基质相关机制提供了一个更具生物学相关性的平台,并可能改善体外研究结果向有效临床应用的转化。

相似文献

1
Three-dimensional human tissue models that incorporate diabetic foot ulcer-derived fibroblasts mimic in vivo features of chronic wounds.
Tissue Eng Part C Methods. 2015 May;21(5):499-508. doi: 10.1089/ten.TEC.2014.0414. Epub 2015 Mar 31.
2
Altered ECM deposition by diabetic foot ulcer-derived fibroblasts implicates fibronectin in chronic wound repair.
Wound Repair Regen. 2016 Jul;24(4):630-43. doi: 10.1111/wrr.12437. Epub 2016 Jun 8.
4
Toward Developing Immunocompetent Diabetic Foot Ulcer-on-a-Chip Models for Drug Testing.
Tissue Eng Part C Methods. 2021 Feb;27(2):77-88. doi: 10.1089/ten.TEC.2020.0331.
5
High-dose folic acid and its effect on early stage diabetic foot ulcer wound healing.
Wound Repair Regen. 2020 Jul;28(4):517-525. doi: 10.1111/wrr.12804. Epub 2020 Mar 30.
7
Mesenchymal stem cells ameliorate impaired wound healing through enhancing keratinocyte functions in diabetic foot ulcerations on the plantar skin of rats.
J Diabetes Complications. 2014 Sep-Oct;28(5):588-95. doi: 10.1016/j.jdiacomp.2014.05.003. Epub 2014 May 22.
8
The role of CXCL8 in chronic nonhealing diabetic foot ulcers and phenotypic changes in fibroblasts: a molecular perspective.
Mol Biol Rep. 2022 Feb;49(2):1565-1572. doi: 10.1007/s11033-022-07144-3. Epub 2022 Jan 19.
9
Atypical Diabetic Foot Ulcer Keratinocyte Protein Signaling Correlates with Impaired Wound Healing.
J Diabetes Res. 2016;2016:1586927. doi: 10.1155/2016/1586927. Epub 2016 Oct 20.

引用本文的文献

2
The development of a direct co-culture-based model for diabetic foot ulcer mimicking inflammation and impaired phagocytosis.
In Vitro Model. 2025 Apr 14;4(2):111-129. doi: 10.1007/s44164-024-00080-5. eCollection 2025 Aug.
4
Innovative Strategies: Use of Stromal Cell-Derived Secretome for Chronic Wound Therapy.
Int J Mol Sci. 2025 Jun 11;26(12):5609. doi: 10.3390/ijms26125609.
9
Assessing Animal Models to Study Impaired and Chronic Wounds.
Int J Mol Sci. 2024 Mar 29;25(7):3837. doi: 10.3390/ijms25073837.

本文引用的文献

1
Fibroblasts derived from human pluripotent stem cells activate angiogenic responses in vitro and in vivo.
PLoS One. 2013 Dec 30;8(12):e83755. doi: 10.1371/journal.pone.0083755. eCollection 2013.
2
3
Enhancing microvascular formation and vessel maturation through temporal control over multiple pro-angiogenic and pro-maturation factors.
Biomaterials. 2013 Dec;34(36):9201-9. doi: 10.1016/j.biomaterials.2013.08.007. Epub 2013 Aug 22.
4
Aberrant angiogenesis: The gateway to diabetic complications.
Indian J Endocrinol Metab. 2012 Nov;16(6):918-30. doi: 10.4103/2230-8210.102992.
5
Three-dimensional cell culture: the missing link in drug discovery.
Drug Discov Today. 2013 Mar;18(5-6):240-9. doi: 10.1016/j.drudis.2012.10.003. Epub 2012 Oct 13.
6
Mechanisms involved in the development and healing of diabetic foot ulceration.
Diabetes. 2012 Nov;61(11):2937-47. doi: 10.2337/db12-0227. Epub 2012 Jun 11.
7
iPSC-derived fibroblasts demonstrate augmented production and assembly of extracellular matrix proteins.
In Vitro Cell Dev Biol Anim. 2012 Feb;48(2):112-22. doi: 10.1007/s11626-011-9478-4. Epub 2012 Jan 19.
8
Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells.
Genome Res. 2011 Oct;21(10):1601-15. doi: 10.1101/gr.116095.110. Epub 2011 Sep 2.
9
Epigenetic phenomena linked to diabetic complications.
Nat Rev Endocrinol. 2010 Dec;6(12):665-75. doi: 10.1038/nrendo.2010.188. Epub 2010 Nov 2.
10
Three-dimensional human tissue models of wounded skin.
Methods Mol Biol. 2010;585:345-59. doi: 10.1007/978-1-60761-380-0_24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验