Suppr超能文献

丙酮酸脱氢酶的基因激活改变氧化底物选择以诱导骨骼肌胰岛素抵抗。

Genetic activation of pyruvate dehydrogenase alters oxidative substrate selection to induce skeletal muscle insulin resistance.

作者信息

Rahimi Yasmeen, Camporez João-Paulo G, Petersen Max C, Pesta Dominik, Perry Rachel J, Jurczak Michael J, Cline Gary W, Shulman Gerald I

机构信息

Departments of Internal Medicine and Cellular & Molecular Physiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510.

Departments of Internal Medicine and.

出版信息

Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16508-13. doi: 10.1073/pnas.1419104111. Epub 2014 Nov 3.

Abstract

The pyruvate dehydrogenase complex (PDH) has been hypothesized to link lipid exposure to skeletal muscle insulin resistance through a glucose-fatty acid cycle in which increased fatty acid oxidation increases acetyl-CoA concentrations, thereby inactivating PDH and decreasing glucose oxidation. However, whether fatty acids induce insulin resistance by decreasing PDH flux remains unknown. To genetically examine this hypothesis we assessed relative rates of pyruvate dehydrogenase flux/mitochondrial oxidative flux and insulin-stimulated rates of muscle glucose metabolism in awake mice lacking pyruvate dehydrogenase kinase 2 and 4 [double knockout (DKO)], which results in constitutively activated PDH. Surprisingly, increased glucose oxidation in DKO muscle was accompanied by reduced insulin-stimulated muscle glucose uptake. Preferential myocellular glucose utilization in DKO mice decreased fatty acid oxidation, resulting in increased reesterification of acyl-CoAs into diacylglycerol and triacylglycerol, with subsequent activation of PKC-θ and inhibition of insulin signaling in muscle. In contrast, other putative mediators of muscle insulin resistance, including muscle acylcarnitines, ceramides, reactive oxygen species production, and oxidative stress markers, were not increased. These findings demonstrate that modulation of oxidative substrate selection to increase muscle glucose utilization surprisingly results in muscle insulin resistance, offering genetic evidence against the glucose-fatty acid cycle hypothesis of muscle insulin resistance.

摘要

丙酮酸脱氢酶复合体(PDH)被认为通过葡萄糖-脂肪酸循环将脂质暴露与骨骼肌胰岛素抵抗联系起来,在该循环中,脂肪酸氧化增加会提高乙酰辅酶A浓度,从而使PDH失活并降低葡萄糖氧化。然而,脂肪酸是否通过降低PDH通量来诱导胰岛素抵抗仍不清楚。为了从基因角度验证这一假设,我们评估了缺乏丙酮酸脱氢酶激酶2和4的清醒小鼠[双敲除(DKO)]中丙酮酸脱氢酶通量/线粒体氧化通量的相对速率以及胰岛素刺激的肌肉葡萄糖代谢速率,这会导致PDH持续激活。令人惊讶的是,DKO肌肉中葡萄糖氧化增加的同时,胰岛素刺激的肌肉葡萄糖摄取却减少了。DKO小鼠中肌细胞优先利用葡萄糖减少了脂肪酸氧化,导致酰基辅酶A再酯化为二酰甘油和三酰甘油的过程增加,随后PKC-θ被激活,肌肉中的胰岛素信号传导受到抑制。相比之下,其他假定的肌肉胰岛素抵抗介质,包括肌肉酰基肉碱、神经酰胺、活性氧生成和氧化应激标志物,并未增加。这些发现表明,调节氧化底物选择以增加肌肉葡萄糖利用会出人意料地导致肌肉胰岛素抵抗,为反对肌肉胰岛素抵抗的葡萄糖-脂肪酸循环假说提供了基因证据。

相似文献

1
Genetic activation of pyruvate dehydrogenase alters oxidative substrate selection to induce skeletal muscle insulin resistance.
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16508-13. doi: 10.1073/pnas.1419104111. Epub 2014 Nov 3.
2
Acute activation of pyruvate dehydrogenase increases glucose oxidation in muscle without changing glucose uptake.
Am J Physiol Endocrinol Metab. 2018 Aug 1;315(2):E258-E266. doi: 10.1152/ajpendo.00386.2017. Epub 2018 Feb 6.
5
Reciprocal regulation of cardiac β-oxidation and pyruvate dehydrogenase by insulin.
J Biol Chem. 2024 Jul;300(7):107412. doi: 10.1016/j.jbc.2024.107412. Epub 2024 May 23.
6
ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4.
Am J Physiol Heart Circ Physiol. 2013 Apr 15;304(8):H1103-13. doi: 10.1152/ajpheart.00636.2012. Epub 2013 Feb 8.
9
Opposite Regulation of Insulin Sensitivity by Dietary Lipid Versus Carbohydrate Excess.
Diabetes. 2017 Oct;66(10):2583-2595. doi: 10.2337/db17-0046. Epub 2017 Aug 2.
10
Regulation of hepatic fat and glucose oxidation in rats with lipid-induced hepatic insulin resistance.
Hepatology. 2011 Apr;53(4):1175-81. doi: 10.1002/hep.24170. Epub 2011 Mar 11.

引用本文的文献

3
The mitochondrial pyruvate carrier at the crossroads of intermediary metabolism.
Am J Physiol Endocrinol Metab. 2022 Jul 1;323(1):E33-E52. doi: 10.1152/ajpendo.00074.2022. Epub 2022 May 30.
8
Mechanisms of muscle insulin resistance and the cross-talk with liver and adipose tissue.
Physiol Rep. 2020 Oct;8(19):e14607. doi: 10.14814/phy2.14607.
9
Intracellular pH Regulation of Skeletal Muscle in the Milieu of Insulin Signaling.
Nutrients. 2020 Sep 23;12(10):2910. doi: 10.3390/nu12102910.
10
Plasma Lactate as a Marker for Metabolic Health.
Exerc Sport Sci Rev. 2020 Jul;48(3):119-124. doi: 10.1249/JES.0000000000000220.

本文引用的文献

1
The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I.
J Biol Chem. 2014 Mar 21;289(12):8312-25. doi: 10.1074/jbc.M113.545301. Epub 2014 Feb 10.
2
Obesity and lipid stress inhibit carnitine acetyltransferase activity.
J Lipid Res. 2014 Apr;55(4):635-44. doi: 10.1194/jlr.M043448. Epub 2014 Jan 6.
5
Mechanisms for insulin resistance: common threads and missing links.
Cell. 2012 Mar 2;148(5):852-71. doi: 10.1016/j.cell.2012.02.017.
6
Regulation of hepatic fat and glucose oxidation in rats with lipid-induced hepatic insulin resistance.
Hepatology. 2011 Apr;53(4):1175-81. doi: 10.1002/hep.24170. Epub 2011 Mar 11.
8
Insulin resistance is a cellular antioxidant defense mechanism.
Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17787-92. doi: 10.1073/pnas.0902380106. Epub 2009 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验