Meagher Kwyn A, Doblack Benjamin N, Ramirez Mercedes, Davila Lilian P
Materials Science and Engineering, School of Engineering, University of California Merced.
Computer Science and Engineering, School of Engineering, University of California Merced.
J Vis Exp. 2014 Nov 12(93):e51372. doi: 10.3791/51372.
Spring-like materials are ubiquitous in nature and of interest in nanotechnology for energy harvesting, hydrogen storage, and biological sensing applications. For predictive simulations, it has become increasingly important to be able to model the structure of nanohelices accurately. To study the effect of local structure on the properties of these complex geometries one must develop realistic models. To date, software packages are rather limited in creating atomistic helical models. This work focuses on producing atomistic models of silica glass (SiO₂) nanoribbons and nanosprings for molecular dynamics (MD) simulations. Using an MD model of "bulk" silica glass, two computational procedures to precisely create the shape of nanoribbons and nanosprings are presented. The first method employs the AWK programming language and open-source software to effectively carve various shapes of silica nanoribbons from the initial bulk model, using desired dimensions and parametric equations to define a helix. With this method, accurate atomistic silica nanoribbons can be generated for a range of pitch values and dimensions. The second method involves a more robust code which allows flexibility in modeling nanohelical structures. This approach utilizes a C++ code particularly written to implement pre-screening methods as well as the mathematical equations for a helix, resulting in greater precision and efficiency when creating nanospring models. Using these codes, well-defined and scalable nanoribbons and nanosprings suited for atomistic simulations can be effectively created. An added value in both open-source codes is that they can be adapted to reproduce different helical structures, independent of material. In addition, a MATLAB graphical user interface (GUI) is used to enhance learning through visualization and interaction for a general user with the atomistic helical structures. One application of these methods is the recent study of nanohelices via MD simulations for mechanical energy harvesting purposes.
类弹簧材料在自然界中无处不在,并且在纳米技术领域中对于能量收集、储氢和生物传感应用具有重要意义。对于预测性模拟而言,能够准确地对纳米螺旋结构进行建模变得越来越重要。为了研究局部结构对这些复杂几何形状性质的影响,必须开发出逼真的模型。到目前为止,在创建原子螺旋模型方面,软件包相当有限。这项工作专注于为分子动力学(MD)模拟生成二氧化硅玻璃(SiO₂)纳米带和纳米弹簧的原子模型。利用“块状”二氧化硅玻璃的MD模型,提出了两种精确创建纳米带和纳米弹簧形状的计算程序。第一种方法使用AWK编程语言和开源软件,通过所需尺寸和参数方程定义螺旋,从初始块状模型中有效地切割出各种形状的二氧化硅纳米带。通过这种方法,可以为一系列螺距值和尺寸生成精确的原子二氧化硅纳米带。第二种方法涉及一个更强大的代码,它在建模纳米螺旋结构时具有灵活性。这种方法利用专门编写的C++代码来实现预筛选方法以及螺旋的数学方程,在创建纳米弹簧模型时具有更高的精度和效率。使用这些代码,可以有效地创建适用于原子模拟的定义明确且可扩展的纳米带和纳米弹簧。这两个开源代码的一个附加价值在于,它们可以被改编以重现不同的螺旋结构,而与材料无关。此外,使用MATLAB图形用户界面(GUI)通过可视化和交互来增强普通用户对原子螺旋结构的学习。这些方法的一个应用是最近通过MD模拟对纳米螺旋进行的机械能收集研究。