Suppr超能文献

使用来自超短回波时间磁共振成像的合成CT进行PET衰减校正。

PET attenuation correction using synthetic CT from ultrashort echo-time MR imaging.

作者信息

Roy Snehashis, Wang Wen-Tung, Carass Aaron, Prince Jerry L, Butman John A, Pham Dzung L

机构信息

Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, Maryland

Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, Maryland.

出版信息

J Nucl Med. 2014 Dec;55(12):2071-7. doi: 10.2967/jnumed.114.143958. Epub 2014 Nov 20.

Abstract

UNLABELLED

Integrated PET/MR systems are becoming increasingly popular in clinical and research applications. Quantitative PET reconstruction requires correction for γ-photon attenuations using an attenuation coefficient map (μ map) that is a measure of the electron density. One challenge of PET/MR, in contrast to PET/CT, lies in the accurate computation of μ maps. Unlike CT, MR imaging measures physical properties not directly related to electron density. Previous approaches have computed the attenuation coefficients using a segmentation of MR images or using deformable registration of atlas CT images to the space of the subject MR images.

METHODS

In this work, we propose a patch-based method to generate whole-head μ maps from ultrashort echo-time (UTE) MR imaging sequences. UTE images are preferred to other MR sequences because of the increased signal from bone. To generate a synthetic CT image, we use patches from a reference dataset, which consists of dual-echo UTE images and a coregistered CT scan from the same subject. Matching of patches between the reference and target images allows corresponding patches from the reference CT scan to be combined via a Bayesian framework. No registration or segmentation is required.

RESULTS

For evaluation, UTE, CT, and PET data acquired from 5 patients under an institutional review board-approved protocol were used. Another patient (with UTE and CT data only) was selected to be the reference to generate synthetic CT images for these 5 patients. PET reconstructions were attenuation-corrected using the original CT, our synthetic CT, Siemens Dixon-based μ maps, Siemens UTE-based μ maps, and deformable registration-based CT. Our synthetic CT-based PET reconstruction showed higher correlation (average ρ = 0.996, R(2) = 0.991) to the original CT-based PET, as compared with the segmentation- and registration-based methods. Synthetic CT-based reconstruction had minimal bias (regression slope, 0.990), as compared with the segmentation-based methods (regression slope, 0.905). A peak signal-to-noise ratio of 35.98 dB in the reconstructed PET activity was observed, compared with 29.767, 29.34, and 27.43 dB for the Siemens Dixon-, UTE-, and registration-based μ maps.

CONCLUSION

A patch-matching approach to synthesize CT images from dual-echo UTE images leads to significantly improved accuracy of PET reconstruction as compared with actual CT scans. The PET reconstruction is improved over segmentation- (Dixon and Siemens UTE) and registration-based methods, even in subjects with pathologic findings.

摘要

未标注

集成式PET/MR系统在临床和研究应用中越来越受欢迎。定量PET重建需要使用作为电子密度度量的衰减系数图(μ图)对γ光子衰减进行校正。与PET/CT相比,PET/MR的一个挑战在于μ图的准确计算。与CT不同,MR成像测量的物理特性与电子密度没有直接关系。以前的方法使用MR图像分割或通过将图谱CT图像变形配准到受检者MR图像空间来计算衰减系数。

方法

在这项工作中,我们提出了一种基于补丁的方法,用于从超短回波时间(UTE)MR成像序列生成全脑μ图。由于骨信号增强,UTE图像比其他MR序列更受青睐。为了生成合成CT图像,我们使用来自参考数据集的补丁,该数据集由同一受检者的双回波UTE图像和配准的CT扫描组成。参考图像和目标图像之间的补丁匹配允许通过贝叶斯框架组合来自参考CT扫描的相应补丁。无需配准或分割。

结果

为了进行评估,使用了根据机构审查委员会批准的方案从5名患者获取的UTE、CT和PET数据。选择另一名患者(仅具有UTE和CT数据)作为参考,为这5名患者生成合成CT图像。使用原始CT、我们的合成CT、基于西门子Dixon的μ图、基于西门子UTE的μ图和基于变形配准的CT对PET重建进行衰减校正。与基于分割和配准的方法相比,我们基于合成CT的PET重建与基于原始CT的PET显示出更高的相关性(平均ρ = 0.996,R(2) = 0.991)。与基于分割的方法(回归斜率为0.905)相比,基于合成CT的重建偏差最小(回归斜率为0.990)。在重建的PET活性中观察到峰值信噪比为35.98 dB,而基于西门子Dixon、UTE和配准的μ图分别为29.767、29.34和27.43 dB。

结论

与实际CT扫描相比,一种从双回波UTE图像合成CT图像的补丁匹配方法可显著提高PET重建的准确性。即使在有病理发现的受检者中,PET重建也比基于分割(Dixon和西门子UTE)和配准的方法有所改进。

相似文献

1
PET attenuation correction using synthetic CT from ultrashort echo-time MR imaging.
J Nucl Med. 2014 Dec;55(12):2071-7. doi: 10.2967/jnumed.114.143958. Epub 2014 Nov 20.
5
MR-based attenuation correction using ultrashort-echo-time pulse sequences in dementia patients.
J Nucl Med. 2015 Mar;56(3):423-9. doi: 10.2967/jnumed.114.146308. Epub 2015 Feb 12.
8
Prediction of CT Substitutes from MR Images Based on Local Diffeomorphic Mapping for Brain PET Attenuation Correction.
J Nucl Med. 2016 Oct;57(10):1635-1641. doi: 10.2967/jnumed.115.163121. Epub 2016 May 26.
9
Quantitative analysis of MRI-guided attenuation correction techniques in time-of-flight brain PET/MRI.
Neuroimage. 2016 Apr 15;130:123-133. doi: 10.1016/j.neuroimage.2016.01.060. Epub 2016 Feb 4.
10
Whole-Body PET/MR Imaging: Quantitative Evaluation of a Novel Model-Based MR Attenuation Correction Method Including Bone.
J Nucl Med. 2015 Jul;56(7):1061-6. doi: 10.2967/jnumed.115.156000. Epub 2015 May 29.

引用本文的文献

1
Cranial glucose metabolic patterns across prodromal and clinical parkinson's disease revealed by F-FDG PET.
Eur J Nucl Med Mol Imaging. 2025 Sep 3. doi: 10.1007/s00259-025-07533-3.
3
Advancements in synthetic CT generation from MRI: A review of techniques, and trends in radiation therapy planning.
J Appl Clin Med Phys. 2024 Nov;25(11):e14499. doi: 10.1002/acm2.14499. Epub 2024 Sep 26.
4
Preliminary Exploration of Pseudo-CT-Based Attenuation Correction for Simultaneous PET/MRI Brain Imaging in Nonhuman Primates.
ACS Omega. 2023 Nov 17;8(48):45438-45446. doi: 10.1021/acsomega.3c04824. eCollection 2023 Dec 5.
5
A review of PET attenuation correction methods for PET-MR.
EJNMMI Phys. 2023 Sep 11;10(1):52. doi: 10.1186/s40658-023-00569-0.
6
Imitation learning for improved 3D PET/MR attenuation correction.
Med Image Anal. 2021 Jul;71:102079. doi: 10.1016/j.media.2021.102079. Epub 2021 Apr 16.
7
DiCyc: GAN-based deformation invariant cross-domain information fusion for medical image synthesis.
Inf Fusion. 2021 Mar;67:147-160. doi: 10.1016/j.inffus.2020.10.015.
9
Attenuation correction for human PET/MRI studies.
Phys Med Biol. 2020 Dec 2;65(23):23TR02. doi: 10.1088/1361-6560/abb0f8.
10
Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation.
Inf Fusion. 2020 Dec;64:149-187. doi: 10.1016/j.inffus.2020.07.006. Epub 2020 Jul 17.

本文引用的文献

1
MR to CT Registration of Brains using Image Synthesis.
Proc SPIE Int Soc Opt Eng. 2014 Mar 21;9034. doi: spie.org/Publications/Proceedings/Paper/10.1117/12.2043954.
2
Attenuation correction synthesis for hybrid PET-MR scanners.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):147-54. doi: 10.1007/978-3-642-40811-3_19.
3
Magnetic Resonance Image Example-Based Contrast Synthesis.
IEEE Trans Med Imaging. 2013 Dec;32(12):2348-63. doi: 10.1109/TMI.2013.2282126. Epub 2013 Sep 16.
4
Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone.
Neuroimage. 2014 Jan 1;84:206-16. doi: 10.1016/j.neuroimage.2013.08.042. Epub 2013 Aug 29.
7
MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods.
J Nucl Med. 2011 Sep;52(9):1392-9. doi: 10.2967/jnumed.110.078949. Epub 2011 Aug 9.
9
Value of a Dixon-based MR/PET attenuation correction sequence for the localization and evaluation of PET-positive lesions.
Eur J Nucl Med Mol Imaging. 2011 Sep;38(9):1691-701. doi: 10.1007/s00259-011-1842-9. Epub 2011 Jun 18.
10
Point set registration: coherent point drift.
IEEE Trans Pattern Anal Mach Intell. 2010 Dec;32(12):2262-75. doi: 10.1109/TPAMI.2010.46.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验