Suppr超能文献

溶液条件在噬菌体PP7衣壳电荷调节中的作用。

The role of solution conditions in the bacteriophage PP7 capsid charge regulation.

作者信息

Nap Rikkert J, Božič Anže Lošdorfer, Szleifer Igal, Podgornik Rudolf

机构信息

Department of Biomedical Engineering, Department of Chemistry, and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois.

Max Planck Institute for Biology of Ageing, Cologne, Germany.

出版信息

Biophys J. 2014 Oct 21;107(8):1970-1979. doi: 10.1016/j.bpj.2014.08.032.

Abstract

We investigate and quantify the effects of pH and salt concentration on the charge regulation of the bacteriophage PP7 capsid. These effects are found to be extremely important and substantial, introducing qualitative changes in the charge state of the capsid such as a transition from net-positive to net-negative charge depending on the solution pH. The overall charge of the virus capsid arises as a consequence of a complicated balance with the chemical dissociation equilibrium of the amino acids and the electrostatic interaction between them, and the translational entropy of the mobile solution ions, i.e., counterion release. We show that to properly describe and predict the charging equilibrium of viral capsids in general, one needs to include molecular details as exemplified by the acid-base equilibrium of the detailed distribution of amino acids in the proteinaceous capsid shell.

摘要

我们研究并量化了pH值和盐浓度对噬菌体PP7衣壳电荷调节的影响。发现这些影响极其重要且显著,会给衣壳的电荷状态带来定性变化,例如根据溶液pH值从净正电荷转变为净负电荷。病毒衣壳的总电荷是氨基酸化学解离平衡及其之间静电相互作用以及流动溶液离子平移熵(即抗衡离子释放)复杂平衡的结果。我们表明,为了总体上正确描述和预测病毒衣壳的电荷平衡,需要纳入分子细节,如蛋白质衣壳壳层中氨基酸详细分布的酸碱平衡所例证的那样。

相似文献

1
The role of solution conditions in the bacteriophage PP7 capsid charge regulation.
Biophys J. 2014 Oct 21;107(8):1970-1979. doi: 10.1016/j.bpj.2014.08.032.
2
The structure of bacteriophage phiCb5 reveals a role of the RNA genome and metal ions in particle stability and assembly.
J Mol Biol. 2009 Aug 21;391(3):635-47. doi: 10.1016/j.jmb.2009.06.047. Epub 2009 Jun 23.
4
Electrostatic potential distribution of a soft spherical particle with a charged core and pH-dependent charge density.
Colloids Surf B Biointerfaces. 2015 Mar 1;127:143-7. doi: 10.1016/j.colsurfb.2015.01.025. Epub 2015 Jan 28.
6
Electrostatics and the assembly of an RNA virus.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 1):061928. doi: 10.1103/PhysRevE.71.061928. Epub 2005 Jun 30.
8
Monte Carlo simulations of polyelectrolytes inside viral capsids.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 1):041921. doi: 10.1103/PhysRevE.73.041921. Epub 2006 Apr 18.
9
pH Dependence of Charge Multipole Moments in Proteins.
Biophys J. 2017 Oct 3;113(7):1454-1465. doi: 10.1016/j.bpj.2017.08.017.
10
Simple rules for efficient assembly predict the layout of a packaged viral RNA.
J Mol Biol. 2011 May 6;408(3):399-407. doi: 10.1016/j.jmb.2011.02.039. Epub 2011 Feb 25.

引用本文的文献

1
Increased preference for lysine over arginine in spike proteins of SARS-CoV-2 BA.2.86 variant and its daughter lineages.
PLoS One. 2025 Apr 7;20(4):e0320891. doi: 10.1371/journal.pone.0320891. eCollection 2025.
2
Fusing fluorescent proteins and ferritin for protein cage based lighting devices.
Nanoscale. 2025 May 2;17(17):10793-10800. doi: 10.1039/d4nr05261g.
3
Editorial on the topical issue of charged species in bulk and at interfaces.
Eur Phys J E Soft Matter. 2025 Mar 28;48(2-3):14. doi: 10.1140/epje/s10189-025-00475-6.
5
The Impact of Charge Regulation and Ionic Intranuclear Environment on the Nucleosome Core Particle.
bioRxiv. 2024 Nov 12:2024.11.11.623012. doi: 10.1101/2024.11.11.623012.
7
Changes in total charge on spike protein of SARS-CoV-2 in emerging lineages.
Bioinform Adv. 2024 Apr 8;4(1):vbae053. doi: 10.1093/bioadv/vbae053. eCollection 2024.

本文引用的文献

1
How simple can a model of an empty viral capsid be? Charge distributions in viral capsids.
J Biol Phys. 2012 Sep;38(4):657-71. doi: 10.1007/s10867-012-9278-4. Epub 2012 Sep 6.
2
Electrophoretic mobilities of a viral capsid, its capsid protein, and their relation to viral assembly.
J Phys Chem B. 2014 Feb 27;118(8):1984-9. doi: 10.1021/jp407379t. Epub 2014 Feb 14.
3
Multivalent ion effects on electrostatic stability of virus-like nano-shells.
J Chem Phys. 2013 Oct 21;139(15):154709. doi: 10.1063/1.4825099.
5
Statistical analysis of sizes and shapes of virus capsids and their resulting elastic properties.
J Biol Phys. 2013 Mar;39(2):215-28. doi: 10.1007/s10867-013-9302-3. Epub 2013 Mar 1.
6
Effect of charge, hydrophobicity, and sequence of nucleoporins on the translocation of model particles through the nuclear pore complex.
Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3363-8. doi: 10.1073/pnas.1212909110. Epub 2013 Feb 12.
7
Impact of charge variation on the encapsulation of nanoparticles by virus coat proteins.
Phys Biol. 2012 Dec;9(6):066004. doi: 10.1088/1478-3975/9/6/066004. Epub 2012 Oct 31.
8
Energies and pressures in viruses: contribution of nonspecific electrostatic interactions.
Phys Chem Chem Phys. 2012 Mar 21;14(11):3746-65. doi: 10.1039/c1cp22756d. Epub 2011 Dec 6.
9
The influence of external factors on bacteriophages--review.
Folia Microbiol (Praha). 2011 May;56(3):191-200. doi: 10.1007/s12223-011-0039-8. Epub 2011 May 31.
10
Electrostatics at the nanoscale.
Nanoscale. 2011 Apr;3(4):1316-44. doi: 10.1039/c0nr00698j. Epub 2011 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验