Suppr超能文献

基于骨骼肌的产热机制在脊椎动物恒温性中的作用。

The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy.

作者信息

Rowland Leslie A, Bal Naresh C, Periasamy Muthu

机构信息

Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A.

出版信息

Biol Rev Camb Philos Soc. 2015 Nov;90(4):1279-97. doi: 10.1111/brv.12157. Epub 2014 Nov 25.

Abstract

Thermogenesis is one of the most important homeostatic mechanisms that evolved during vertebrate evolution. Despite its importance for the survival of the organism, the mechanistic details behind various thermogenic processes remain incompletely understood. Although heat production from muscle has long been recognized as a thermogenic mechanism, whether muscle can produce heat independently of contraction remains controversial. Studies in birds and mammals suggest that skeletal muscle can be an important site of non-shivering thermogenesis (NST) and can be recruited during cold adaptation, although unequivocal evidence is lacking. Much research on thermogenesis during the last two decades has been focused on brown adipose tissue (BAT). These studies clearly implicate BAT as an important site of NST in mammals, in particular in newborns and rodents. However, BAT is either absent, as in birds and pigs, or is only a minor component, as in adult large mammals including humans, bringing into question the BAT-centric view of thermogenesis. This review focuses on the evolution and emergence of various thermogenic mechanisms in vertebrates from fish to man. A careful analysis of the existing data reveals that muscle was the earliest facultative thermogenic organ to emerge in vertebrates, long before the appearance of BAT in eutherian mammals. Additionally, these studies suggest that muscle-based thermogenesis is the dominant mechanism of heat production in many species including birds, marsupials, and certain mammals where BAT-mediated thermogenesis is absent or limited. We discuss the relevance of our recent findings showing that uncoupling of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) by sarcolipin (SLN), resulting in futile cycling and increased heat production, could be the basis for NST in skeletal muscle. The overall goal of this review is to highlight the role of skeletal muscle as a thermogenic organ and provide a balanced view of thermogenesis in vertebrates.

摘要

产热是脊椎动物进化过程中演变出的最重要的稳态机制之一。尽管它对生物体的生存至关重要,但各种产热过程背后的机制细节仍未完全明了。虽然肌肉产热长期以来一直被认为是一种产热机制,但肌肉是否能独立于收缩产生热量仍存在争议。对鸟类和哺乳动物的研究表明,骨骼肌可能是无寒战产热(NST)的重要部位,并且在冷适应过程中会被调动起来,尽管缺乏确凿的证据。过去二十年中,许多关于产热的研究都集中在棕色脂肪组织(BAT)上。这些研究清楚地表明,BAT是哺乳动物尤其是新生儿和啮齿动物中NST的重要部位。然而,BAT在鸟类和猪中并不存在,或者在包括人类在内的成年大型哺乳动物中只是一个次要成分,这使得以BAT为中心的产热观点受到质疑。这篇综述聚焦于从鱼类到人类的脊椎动物中各种产热机制的进化和出现。对现有数据的仔细分析表明,肌肉是脊椎动物中最早出现的兼性产热器官,远早于真兽类哺乳动物中BAT的出现。此外,这些研究表明,在许多物种中,包括鸟类、有袋类动物以及某些不存在或有限存在BAT介导产热的哺乳动物,基于肌肉的产热是产热的主要机制。我们讨论了我们最近的发现所具有的相关性,即肌脂蛋白(SLN)使肌(内质)网Ca(2+) - ATP酶(SERCA)解偶联,导致无效循环并增加产热,这可能是骨骼肌中NST的基础。这篇综述的总体目标是强调骨骼肌作为产热器官的作用,并提供关于脊椎动物产热的平衡观点。

相似文献

1
The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy.
Biol Rev Camb Philos Soc. 2015 Nov;90(4):1279-97. doi: 10.1111/brv.12157. Epub 2014 Nov 25.
2
Avian adjustments to cold and non-shivering thermogenesis: whats, wheres and hows.
Biol Rev Camb Philos Soc. 2022 Dec;97(6):2106-2126. doi: 10.1111/brv.12885. Epub 2022 Jul 28.
3
Uncoupling of sarcoendoplasmic reticulum calcium ATPase pump activity by sarcolipin as the basis for muscle non-shivering thermogenesis.
Philos Trans R Soc Lond B Biol Sci. 2020 Mar 2;375(1793):20190135. doi: 10.1098/rstb.2019.0135. Epub 2020 Jan 13.
4
Whole-body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians.
Biol Rev Camb Philos Soc. 2022 Apr;97(2):766-801. doi: 10.1111/brv.12822. Epub 2021 Dec 10.
5
Muscle Non-shivering Thermogenesis and Its Role in the Evolution of Endothermy.
Front Physiol. 2017 Nov 9;8:889. doi: 10.3389/fphys.2017.00889. eCollection 2017.
6
Both brown adipose tissue and skeletal muscle thermogenesis processes are activated during mild to severe cold adaptation in mice.
J Biol Chem. 2017 Oct 6;292(40):16616-16625. doi: 10.1074/jbc.M117.790451. Epub 2017 Aug 9.
7
Increased Reliance on Muscle-based Thermogenesis upon Acute Minimization of Brown Adipose Tissue Function.
J Biol Chem. 2016 Aug 12;291(33):17247-57. doi: 10.1074/jbc.M116.728188. Epub 2016 Jun 13.
8
Muscle nonshivering thermogenesis in a feral mammal.
Sci Rep. 2019 Apr 23;9(1):6378. doi: 10.1038/s41598-019-42756-z.
10
Switching on the furnace: Regulation of heat production in brown adipose tissue.
Mol Aspects Med. 2019 Aug;68:60-73. doi: 10.1016/j.mam.2019.07.005. Epub 2019 Aug 5.

引用本文的文献

2
The Structural Adaptations That Mediate Mechanical Load-Induced Changes in Muscle Mass.
Adv Exp Med Biol. 2025;1478:61-84. doi: 10.1007/978-3-031-88361-3_4.
4
Genetically-encoded temperature indicators for thermal biology.
Biophys Physicobiol. 2025 Apr 8;22(2):e220008. doi: 10.2142/biophysico.bppb-v22.0008. eCollection 2025.
6
Comparative analysis of acute eccentric contraction-induced changes to the skeletal muscle transcriptome in young and aged mice and humans.
Am J Physiol Regul Integr Comp Physiol. 2025 Jan 1;328(1):R45-R58. doi: 10.1152/ajpregu.00224.2024. Epub 2024 Nov 4.
7
Sleep deprivation stimulates adaptive thermogenesis by activating AMPK pathway in mice.
J Comp Physiol B. 2025 Feb;195(1):141-153. doi: 10.1007/s00360-024-01590-0. Epub 2024 Oct 30.
9
Integrative paleophysiology of the metriorhynchoid Pelagosaurus typus (Pseudosuchia, Thalattosuchia).
Anat Rec (Hoboken). 2025 Feb;308(2):394-411. doi: 10.1002/ar.25548. Epub 2024 Aug 23.
10
We need to talk-how muscle stem cells communicate.
Front Cell Dev Biol. 2024 Jul 10;12:1378548. doi: 10.3389/fcell.2024.1378548. eCollection 2024.

本文引用的文献

1
A smooth muscle-like origin for beige adipocytes.
Cell Metab. 2014 May 6;19(5):810-20. doi: 10.1016/j.cmet.2014.03.025. Epub 2014 Apr 4.
2
Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice.
Cell Metab. 2014 Apr 1;19(4):593-604. doi: 10.1016/j.cmet.2014.03.007.
4
Co-expression of SERCA isoforms, phospholamban and sarcolipin in human skeletal muscle fibers.
PLoS One. 2013 Dec 16;8(12):e84304. doi: 10.1371/journal.pone.0084304. eCollection 2013.
5
Ca(2+)/H (+) exchange, lumenal Ca(2+) release and Ca (2+)/ATP coupling ratios in the sarcoplasmic reticulum ATPase.
J Cell Commun Signal. 2014 Mar;8(1):5-11. doi: 10.1007/s12079-013-0213-7. Epub 2013 Dec 4.
6
EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex.
Nature. 2013 Dec 5;504(7478):163-7. doi: 10.1038/nature12652. Epub 2013 Nov 6.
8
Brown and beige fat: development, function and therapeutic potential.
Nat Med. 2013 Oct;19(10):1252-63. doi: 10.1038/nm.3361. Epub 2013 Sep 29.
9
The radiation of cynodonts and the ground plan of mammalian morphological diversity.
Proc Biol Sci. 2013 Aug 28;280(1769):20131865. doi: 10.1098/rspb.2013.1865. Print 2013 Oct 22.
10
Thyroid hormone regulates muscle function during cold acclimation in zebrafish (Danio rerio).
J Exp Biol. 2013 Sep 15;216(Pt 18):3514-21. doi: 10.1242/jeb.089136.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验