Suppr超能文献

贝叶斯蛋白质异构体建模可改善全局蛋白质组学测量中的蛋白质定量。

Bayesian proteoform modeling improves protein quantification of global proteomic measurements.

作者信息

Webb-Robertson Bobbie-Jo M, Matzke Melissa M, Datta Susmita, Payne Samuel H, Kang Jiyun, Bramer Lisa M, Nicora Carrie D, Shukla Anil K, Metz Thomas O, Rodland Karin D, Smith Richard D, Tardiff Mark F, McDermott Jason E, Pounds Joel G, Waters Katrina M

机构信息

From the ‡Applied Statistics and Computational Modeling, Pacific Northwest National Laboratory, Richland, WA 99354;

§Computational Biology & Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99354;

出版信息

Mol Cell Proteomics. 2014 Dec;13(12):3639-46. doi: 10.1074/mcp.M113.030932.

Abstract

As the capability of mass spectrometry-based proteomics has matured, tens of thousands of peptides can be measured simultaneously, which has the benefit of offering a systems view of protein expression. However, a major challenge is that, with an increase in throughput, protein quantification estimation from the native measured peptides has become a computational task. A limitation to existing computationally driven protein quantification methods is that most ignore protein variation, such as alternate splicing of the RNA transcript and post-translational modifications or other possible proteoforms, which will affect a significant fraction of the proteome. The consequence of this assumption is that statistical inference at the protein level, and consequently downstream analyses, such as network and pathway modeling, have only limited power for biomarker discovery. Here, we describe a Bayesian Proteoform Quantification model (BP-Quant)(1) that uses statistically derived peptides signatures to identify peptides that are outside the dominant pattern or the existence of multiple overexpressed patterns to improve relative protein abundance estimates. It is a research-driven approach that utilizes the objectives of the experiment, defined in the context of a standard statistical hypothesis, to identify a set of peptides exhibiting similar statistical behavior relating to a protein. This approach infers that changes in relative protein abundance can be used as a surrogate for changes in function, without necessarily taking into account the effect of differential post-translational modifications, processing, or splicing in altering protein function. We verify the approach using a dilution study from mouse plasma samples and demonstrate that BP-Quant achieves similar accuracy as the current state-of-the-art methods at proteoform identification with significantly better specificity. BP-Quant is available as a MatLab® and R packages.

摘要

随着基于质谱的蛋白质组学技术日益成熟,可同时检测数以万计的肽段,这有助于从系统层面了解蛋白质表达情况。然而,一个主要挑战在于,随着通量的增加,从原始测量肽段进行蛋白质定量估计已成为一项计算任务。现有计算驱动的蛋白质定量方法的一个局限性在于,大多数方法忽略了蛋白质变异,如RNA转录本的可变剪接、翻译后修饰或其他可能的蛋白质异构体,而这些会影响相当一部分蛋白质组。这种假设的结果是,在蛋白质水平上的统计推断以及随之而来的下游分析,如网络和通路建模,在生物标志物发现方面的能力有限。在此,我们描述了一种贝叶斯蛋白质异构体定量模型(BP-Quant),该模型利用统计推导的肽段特征来识别偏离主导模式的肽段或多种过表达模式的存在,以改进相对蛋白质丰度估计。这是一种以研究为导向的方法,它利用在标准统计假设背景下定义的实验目标,来识别一组与蛋白质相关的具有相似统计行为的肽段。这种方法推断,相对蛋白质丰度的变化可以用作功能变化的替代指标,而不必考虑翻译后修饰、加工或剪接差异对蛋白质功能改变的影响。我们使用小鼠血浆样本的稀释研究验证了该方法,并证明BP-Quant在蛋白质异构体鉴定方面与当前最先进的方法具有相似的准确性,且特异性显著更高。BP-Quant可作为MatLab®和R软件包获取。

相似文献

1
Bayesian proteoform modeling improves protein quantification of global proteomic measurements.
Mol Cell Proteomics. 2014 Dec;13(12):3639-46. doi: 10.1074/mcp.M113.030932.
2
Bayesian Proteoform Modeling Improves Protein Quantification of Global Proteomic Measurements.
Mol Cell Proteomics. 2014 Aug 16. doi: 10.1074/mcp.O113.030932.
3
Characterization of Proteoforms with Unknown Post-translational Modifications Using the MIScore.
J Proteome Res. 2016 Aug 5;15(8):2422-32. doi: 10.1021/acs.jproteome.5b01098. Epub 2016 Jul 1.
4
ProForma: A Standard Proteoform Notation.
J Proteome Res. 2018 Mar 2;17(3):1321-1325. doi: 10.1021/acs.jproteome.7b00851. Epub 2018 Feb 14.
5
Improving Proteoform Identifications in Complex Systems Through Integration of Bottom-Up and Top-Down Data.
J Proteome Res. 2020 Aug 7;19(8):3510-3517. doi: 10.1021/acs.jproteome.0c00332. Epub 2020 Jul 10.
6
A mass graph-based approach for the identification of modified proteoforms using top-down tandem mass spectra.
Bioinformatics. 2017 May 1;33(9):1309-1316. doi: 10.1093/bioinformatics/btw806.
7
Identification and Quantification of Proteoforms by Mass Spectrometry.
Proteomics. 2019 May;19(10):e1800361. doi: 10.1002/pmic.201800361.
8
Intact-Mass Analysis Facilitating the Identification of Large Human Heart Proteoforms.
Anal Chem. 2019 Sep 3;91(17):10937-10942. doi: 10.1021/acs.analchem.9b02343. Epub 2019 Aug 14.
9
Profiling proteoforms: promising follow-up of proteomics for biomarker discovery.
Expert Rev Proteomics. 2014 Feb;11(1):121-9. doi: 10.1586/14789450.2014.878652.
10
Proteoform Analysis and Construction of Proteoform Families in Proteoform Suite.
Methods Mol Biol. 2022;2500:67-81. doi: 10.1007/978-1-0716-2325-1_7.

引用本文的文献

1
Multi-platform omics analysis of Nipah virus infection reveals viral glycoprotein modulation of mitochondria.
Cell Rep. 2025 Mar 25;44(3):115411. doi: 10.1016/j.celrep.2025.115411. Epub 2025 Mar 17.
3
A compendium of multi-omics data illuminating host responses to lethal human virus infections.
Sci Data. 2024 Apr 2;11(1):328. doi: 10.1038/s41597-024-03124-3.
4
Deciphering ApoE Genotype-Driven Proteomic and Lipidomic Alterations in Alzheimer's Disease Across Distinct Brain Regions.
J Proteome Res. 2024 Aug 2;23(8):2970-2985. doi: 10.1021/acs.jproteome.3c00604. Epub 2024 Jan 18.
6
A statistical testing procedure for validating class labels.
J Appl Stat. 2022 Feb 24;50(8):1725-1749. doi: 10.1080/02664763.2022.2038546. eCollection 2023.
7
Missing data in multi-omics integration: Recent advances through artificial intelligence.
Front Artif Intell. 2023 Feb 9;6:1098308. doi: 10.3389/frai.2023.1098308. eCollection 2023.
8
Challenges and Opportunities for Bayesian Statistics in Proteomics.
J Proteome Res. 2022 Apr 1;21(4):849-864. doi: 10.1021/acs.jproteome.1c00859. Epub 2022 Mar 8.
9
Putting Humpty Dumpty Back Together Again: What Does Protein Quantification Mean in Bottom-Up Proteomics?
J Proteome Res. 2022 Apr 1;21(4):891-898. doi: 10.1021/acs.jproteome.1c00894. Epub 2022 Feb 27.
10
Unfolded Protein Response Inhibition Reduces Middle East Respiratory Syndrome Coronavirus-Induced Acute Lung Injury.
mBio. 2021 Aug 31;12(4):e0157221. doi: 10.1128/mBio.01572-21. Epub 2021 Aug 10.

本文引用的文献

1
Protein quantification by peptide quality control (PQPQ) of shotgun proteomics data.
Methods Mol Biol. 2013;1023:149-58. doi: 10.1007/978-1-4614-7209-4_9.
2
Biomarkers for Alzheimer's disease in plasma, serum and blood - conceptual and practical problems.
Alzheimers Res Ther. 2013 Mar 7;5(2):10. doi: 10.1186/alzrt164. eCollection 2013.
3
Proteoform: a single term describing protein complexity.
Nat Methods. 2013 Mar;10(3):186-7. doi: 10.1038/nmeth.2369.
4
Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin.
Toxicol Appl Pharmacol. 2013 Mar 1;267(2):137-48. doi: 10.1016/j.taap.2012.12.020. Epub 2013 Jan 7.
5
Biomarkers for ectopic pregnancy and pregnancy of unknown location.
Fertil Steril. 2013 Mar 15;99(4):1107-16. doi: 10.1016/j.fertnstert.2012.11.038. Epub 2013 Jan 3.
7
The role of proteomics in prostate cancer research: biomarker discovery and validation.
Clin Biochem. 2013 Apr;46(6):524-38. doi: 10.1016/j.clinbiochem.2012.12.012. Epub 2012 Dec 22.
8
Breast cancer biomarkers: proteomic discovery and translation to clinically relevant assays.
Expert Rev Proteomics. 2012 Dec;9(6):599-614. doi: 10.1586/epr.12.62.
10
Mass spectrometry for translational proteomics: progress and clinical implications.
Genome Med. 2012 Aug 31;4(8):63. doi: 10.1186/gm364. eCollection 2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验