Suppr超能文献

GTPBP3 基因突变导致与肥厚型心肌病、乳酸性酸中毒和脑病相关的线粒体翻译缺陷。

Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy.

机构信息

Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany.

MRC Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK.

出版信息

Am J Hum Genet. 2014 Dec 4;95(6):708-20. doi: 10.1016/j.ajhg.2014.10.017. Epub 2014 Nov 26.

Abstract

Respiratory chain deficiencies exhibit a wide variety of clinical phenotypes resulting from defective mitochondrial energy production through oxidative phosphorylation. These defects can be caused by either mutations in the mtDNA or mutations in nuclear genes coding for mitochondrial proteins. The underlying pathomechanisms can affect numerous pathways involved in mitochondrial physiology. By whole-exome and candidate gene sequencing, we identified 11 individuals from 9 families carrying compound heterozygous or homozygous mutations in GTPBP3, encoding the mitochondrial GTP-binding protein 3. Affected individuals from eight out of nine families presented with combined respiratory chain complex deficiencies in skeletal muscle. Mutations in GTPBP3 are associated with a severe mitochondrial translation defect, consistent with the predicted function of the protein in catalyzing the formation of 5-taurinomethyluridine (τm(5)U) in the anticodon wobble position of five mitochondrial tRNAs. All case subjects presented with lactic acidosis and nine developed hypertrophic cardiomyopathy. In contrast to individuals with mutations in MTO1, the protein product of which is predicted to participate in the generation of the same modification, most individuals with GTPBP3 mutations developed neurological symptoms and MRI involvement of thalamus, putamen, and brainstem resembling Leigh syndrome. Our study of a mitochondrial translation disorder points toward the importance of posttranscriptional modification of mitochondrial tRNAs for proper mitochondrial function.

摘要

呼吸链缺陷表现出多种多样的临床表型,这些表型是由于氧化磷酸化过程中线粒体能量产生的缺陷所致。这些缺陷可能是由 mtDNA 突变或编码线粒体蛋白的核基因突变引起的。潜在的病理机制可以影响涉及线粒体生理学的众多途径。通过全外显子组和候选基因测序,我们从 9 个家族的 11 名个体中鉴定出 GTPBP3 基因(编码线粒体 GTP 结合蛋白 3)存在复合杂合或纯合突变。来自 9 个家族中的 8 个家族的受影响个体表现出骨骼肌中复合呼吸链复合物缺陷。GTPBP3 突变与严重的线粒体翻译缺陷相关,这与该蛋白在催化 5 个线粒体 tRNA 反密码子摆动位置上形成 5-牛磺酸甲基尿嘧啶(τm(5)U)的预测功能一致。所有病例均表现为乳酸酸中毒,9 例发展为肥厚型心肌病。与预测参与产生相同修饰的 MTO1 蛋白产物的个体不同,大多数 GTPBP3 突变个体表现出神经系统症状和丘脑、壳核和脑干的 MRI 受累,类似于 Leigh 综合征。我们对线粒体翻译障碍的研究表明,线粒体 tRNA 的转录后修饰对于线粒体功能的正常发挥非常重要。

相似文献

4
Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis.
Am J Hum Genet. 2012 Jun 8;90(6):1079-87. doi: 10.1016/j.ajhg.2012.04.011. Epub 2012 May 17.
6
Expanding the phenotypic and genetic spectrum of GTPBP3 deficiency: findings from nine Chinese pedigrees.
Orphanet J Rare Dis. 2024 Dec 24;19(1):488. doi: 10.1186/s13023-024-03469-3.
9
The genotypic and phenotypic spectrum of MTO1 deficiency.
Mol Genet Metab. 2018 Jan;123(1):28-42. doi: 10.1016/j.ymgme.2017.11.003. Epub 2017 Nov 15.

引用本文的文献

4
Metabolism Meets Translation: Dietary and Metabolic Influences on tRNA Modifications and Codon Biased Translation.
Wiley Interdiscip Rev RNA. 2025 Mar-Apr;16(2):e70011. doi: 10.1002/wrna.70011.
5
Expanding the phenotypic and genetic spectrum of GTPBP3 deficiency: findings from nine Chinese pedigrees.
Orphanet J Rare Dis. 2024 Dec 24;19(1):488. doi: 10.1186/s13023-024-03469-3.
7
Mutations in GTPBP3 cause aberrant mitochondrial respiration associated with combined oxidative phosphorylation deficiency 23.
Genes Dis. 2024 Feb 2;12(1):101232. doi: 10.1016/j.gendis.2024.101232. eCollection 2025 Jan.
8
A novel mutation in causes combined oxidative phosphorylation deficiency 23 by affecting pre-mRNA splicing.
Heliyon. 2024 Mar 2;10(6):e27199. doi: 10.1016/j.heliyon.2024.e27199. eCollection 2024 Mar 30.
9
Variation of the 2D Pattern of Brain Proteins in Mice Infected with ORF Strain.
Int J Mol Sci. 2024 Jan 25;25(3):1460. doi: 10.3390/ijms25031460.
10
Biallelic variants in GTPBP3: New patients, phenotypic spectrum, and outcome.
Ann Clin Transl Neurol. 2024 Mar;11(3):819-825. doi: 10.1002/acn3.51980. Epub 2024 Feb 7.

本文引用的文献

2
Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA.
PLoS Genet. 2014 Jun 5;10(6):e1004424. doi: 10.1371/journal.pgen.1004424. eCollection 2014 Jun.
3
A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs.
Nucleic Acids Res. 2014 Jun;42(11):7346-57. doi: 10.1093/nar/gku390. Epub 2014 May 15.
4
Mitochondria: impaired mitochondrial translation in human disease.
Int J Biochem Cell Biol. 2014 Mar;48(100):77-84. doi: 10.1016/j.biocel.2013.12.011. Epub 2014 Jan 8.
6
ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy.
Am J Hum Genet. 2013 Aug 8;93(2):211-23. doi: 10.1016/j.ajhg.2013.06.006. Epub 2013 Jul 11.
7
Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease.
Nat Genet. 2013 Feb;45(2):214-9. doi: 10.1038/ng.2501. Epub 2013 Jan 13.
8
Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis.
Am J Hum Genet. 2012 Jun 8;90(6):1079-87. doi: 10.1016/j.ajhg.2012.04.011. Epub 2012 May 17.
9
Microscale oxygraphy reveals OXPHOS impairment in MRC mutant cells.
Mitochondrion. 2012 Mar;12(2):328-35. doi: 10.1016/j.mito.2012.01.001. Epub 2012 Jan 28.
10
Mitochondrial tRNA mutations and disease.
Wiley Interdiscip Rev RNA. 2010 Sep-Oct;1(2):304-24. doi: 10.1002/wrna.27. Epub 2010 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验