Suppr超能文献

卡介苗诱导的自然杀伤细胞训练免疫:对感染的非特异性保护作用。

BCG-induced trained immunity in NK cells: Role for non-specific protection to infection.

作者信息

Kleinnijenhuis Johanneke, Quintin Jessica, Preijers Frank, Joosten Leo A B, Jacobs Cor, Xavier Ramnik J, van der Meer Jos W M, van Crevel Reinout, Netea Mihai G

机构信息

Department of Internal Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.

Department of Internal Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.

出版信息

Clin Immunol. 2014 Dec;155(2):213-9. doi: 10.1016/j.clim.2014.10.005. Epub 2014 Oct 25.

Abstract

Adaptive features of innate immunity, also termed 'trained immunity', have recently been shown to characterize monocytes of BCG vaccinated healthy volunteers. Trained immunity leads to increased cytokine production in response to non-related pathogens via epigenetic reprogramming of monocytes. Recently, memory-like properties were also observed in NK cells during viral infections, but it is unknown if memory properties of NK cells contribute to trained immunity due to BCG vaccination. BCG vaccination of healthy volunteers increased proinflammatory cytokine production following ex vivo stimulation of NK cells with mycobacteria and other unrelated pathogens up until at least three months after vaccination. In addition, in a murine model of disseminated candidiasis, BCG vaccination led to an increased survival in SCID mice, which was partially dependent on NK cells. These findings suggest that NK cells may contribute to the non-specific (heterologous) beneficial effects of BCG vaccination.

摘要

先天性免疫的适应性特征,也被称为“训练有素的免疫”,最近已被证明是卡介苗接种的健康志愿者单核细胞的特征。训练有素的免疫通过单核细胞的表观遗传重编程导致对非相关病原体产生的细胞因子增加。最近,在病毒感染期间自然杀伤细胞(NK细胞)中也观察到类似记忆的特性,但尚不清楚NK细胞的记忆特性是否有助于卡介苗接种所产生的训练有素的免疫。健康志愿者接种卡介苗后,用分枝杆菌和其他不相关病原体对NK细胞进行体外刺激后,促炎细胞因子的产生增加,这种增加至少持续到接种疫苗后三个月。此外,在播散性念珠菌病的小鼠模型中,卡介苗接种可提高重症联合免疫缺陷(SCID)小鼠的存活率,这部分依赖于NK细胞。这些发现表明,NK细胞可能有助于卡介苗接种产生的非特异性(异源)有益效果。

相似文献

1
BCG-induced trained immunity in NK cells: Role for non-specific protection to infection.
Clin Immunol. 2014 Dec;155(2):213-9. doi: 10.1016/j.clim.2014.10.005. Epub 2014 Oct 25.
2
Seasonal variation in BCG-induced trained immunity.
Vaccine. 2024 Oct 24;42(24):126109. doi: 10.1016/j.vaccine.2024.07.010. Epub 2024 Jul 8.
3
BCG-Induced Cross-Protection and Development of Trained Immunity: Implication for Vaccine Design.
Front Immunol. 2019 Nov 29;10:2806. doi: 10.3389/fimmu.2019.02806. eCollection 2019.
4
Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity.
J Innate Immun. 2014;6(2):152-8. doi: 10.1159/000355628. Epub 2013 Oct 30.
5
Circadian rhythm influences induction of trained immunity by BCG vaccination.
J Clin Invest. 2020 Oct 1;130(10):5603-5617. doi: 10.1172/JCI133934.
7
The impact of BCG dose and revaccination on trained immunity.
Clin Immunol. 2023 Jan;246:109208. doi: 10.1016/j.clim.2022.109208. Epub 2022 Dec 21.
8
BCG Vaccination Induces Long-Term Functional Reprogramming of Human Neutrophils.
Cell Rep. 2020 Nov 17;33(7):108387. doi: 10.1016/j.celrep.2020.108387.
10
Trained innate immunity and resistance to Mycobacterium tuberculosis infection.
Clin Microbiol Infect. 2019 Dec;25(12):1468-1472. doi: 10.1016/j.cmi.2019.02.015. Epub 2019 Feb 23.

引用本文的文献

1
Trained immunity in farm animals.
Vet Res. 2025 Aug 8;56(1):166. doi: 10.1186/s13567-025-01594-w.
3
Probiotic peptidoglycan skeleton enhances vaccine efficacy against MRSA by inducing trained immunity via the TLR2/JAK-STAT3 pathway.
Front Immunol. 2025 Jul 18;16:1606626. doi: 10.3389/fimmu.2025.1606626. eCollection 2025.
4
Trained immunity in the lung.
Elife. 2025 Aug 1;14:e104918. doi: 10.7554/eLife.104918.
5
Trained immunity: novel perspectives in diabetes and associated complications.
Front Immunol. 2025 Jul 17;16:1613602. doi: 10.3389/fimmu.2025.1613602. eCollection 2025.
6
Immunization with Complete Freund's Adjuvant Reveals Trained Immunity-like Features in A/J Mice.
Vaccines (Basel). 2025 Jul 21;13(7):768. doi: 10.3390/vaccines13070768.
8
Recombinant BCG-Based HIV Vaccine: Failures and Promising Approaches for a Successful Vaccine Strategy.
Vaccines (Basel). 2025 Jun 3;13(6):606. doi: 10.3390/vaccines13060606.
9
Trained immunity: A new player in cancer immunotherapy.
Elife. 2025 Jun 18;14:e104920. doi: 10.7554/eLife.104920.
10
Immune mechanisms mediating the heterologous effects of BCG vaccination: a systematic review.
Front Immunol. 2025 May 19;16:1567111. doi: 10.3389/fimmu.2025.1567111. eCollection 2025.

本文引用的文献

4
Natural killer cells: walking three paths down memory lane.
Trends Immunol. 2013 Jun;34(6):251-8. doi: 10.1016/j.it.2013.02.005. Epub 2013 Mar 14.
5
Epigenetic regulation of NK cell differentiation and effector functions.
Front Immunol. 2013 Feb 28;4:55. doi: 10.3389/fimmu.2013.00055. eCollection 2013.
6
Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes.
Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17537-42. doi: 10.1073/pnas.1202870109. Epub 2012 Sep 17.
7
Cytokine activation induces human memory-like NK cells.
Blood. 2012 Dec 6;120(24):4751-60. doi: 10.1182/blood-2012-04-419283. Epub 2012 Sep 14.
8
Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes.
Cell Host Microbe. 2012 Aug 16;12(2):223-32. doi: 10.1016/j.chom.2012.06.006.
9
Trained immunity: a memory for innate host defense.
Cell Host Microbe. 2011 May 19;9(5):355-61. doi: 10.1016/j.chom.2011.04.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验