Suppr超能文献

SNPlice:从RNA测序数据中调控内含子保留的变异体。

SNPlice: variants that modulate Intron retention from RNA-sequencing data.

作者信息

Mudvari Prakriti, Movassagh Mercedeh, Kowsari Kamran, Seyfi Ali, Kokkinaki Maria, Edwards Nathan J, Golestaneh Nady, Horvath Anelia

机构信息

McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine and Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA and Department of Ophthalmology, Department of Neurology and Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, School of Medicine, Washington, DC 20057, USA McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine and Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA and Department of Ophthalmology, Department of Neurology and Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, School of Medicine, Washington, DC 20057, USA.

McCormick Genomics and Proteomics Center, Department of Biochemistry and Molecular Medicine and Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA and Department of Ophthalmology, Department of Neurology and Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, School of Medicine, Washington, DC 20057, USA.

出版信息

Bioinformatics. 2015 Apr 15;31(8):1191-8. doi: 10.1093/bioinformatics/btu804. Epub 2014 Dec 6.

Abstract

RATIONALE

The growing recognition of the importance of splicing, together with rapidly accumulating RNA-sequencing data, demand robust high-throughput approaches, which efficiently analyze experimentally derived whole-transcriptome splice profiles.

RESULTS

We have developed a computational approach, called SNPlice, for identifying cis-acting, splice-modulating variants from RNA-seq datasets. SNPlice mines RNA-seq datasets to find reads that span single-nucleotide variant (SNV) loci and nearby splice junctions, assessing the co-occurrence of variants and molecules that remain unspliced at nearby exon-intron boundaries. Hence, SNPlice highlights variants preferentially occurring on intron-containing molecules, possibly resulting from altered splicing. To illustrate co-occurrence of variant nucleotide and exon-intron boundary, allele-specific sequencing was used. SNPlice results are generally consistent with splice-prediction tools, but also indicate splice-modulating elements missed by other algorithms. SNPlice can be applied to identify variants that correlate with unexpected splicing events, and to measure the splice-modulating potential of canonical splice-site SNVs.

AVAILABILITY AND IMPLEMENTATION

SNPlice is freely available for download from https://code.google.com/p/snplice/ as a self-contained binary package for 64-bit Linux computers and as python source-code.

CONTACT

pmudvari@gwu.edu or horvatha@gwu.edu

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

原理

随着对剪接重要性的认识不断提高,以及RNA测序数据的迅速积累,需要强大的高通量方法来有效分析实验获得的全转录组剪接图谱。

结果

我们开发了一种名为SNPlice的计算方法,用于从RNA测序数据集中识别顺式作用的剪接调节变体。SNPlice挖掘RNA测序数据集,以找到跨越单核苷酸变体(SNV)位点和附近剪接位点的读数,评估变体与在附近外显子-内含子边界处未剪接的分子的共现情况。因此,SNPlice突出显示优先出现在含内含子分子上的变体,这可能是由于剪接改变所致。为了说明变体核苷酸与外显子-内含子边界的共现情况,使用了等位基因特异性测序。SNPlice的结果通常与剪接预测工具一致,但也指出了其他算法遗漏的剪接调节元件。SNPlice可用于识别与意外剪接事件相关的变体,并测量典型剪接位点SNV的剪接调节潜力。

可用性和实现方式

SNPlice可从https://code.google.com/p/snplice/免费下载,有适用于64位Linux计算机的独立二进制包以及Python源代码。

联系方式

pmudvari@gwu.eduhorvatha@gwu.edu

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

1
SNPlice: variants that modulate Intron retention from RNA-sequencing data.
Bioinformatics. 2015 Apr 15;31(8):1191-8. doi: 10.1093/bioinformatics/btu804. Epub 2014 Dec 6.
2
PASSion: a pattern growth algorithm-based pipeline for splice junction detection in paired-end RNA-Seq data.
Bioinformatics. 2012 Feb 15;28(4):479-86. doi: 10.1093/bioinformatics/btr712. Epub 2012 Jan 4.
3
ChopStitch: exon annotation and splice graph construction using transcriptome assembly and whole genome sequencing data.
Bioinformatics. 2018 May 15;34(10):1697-1704. doi: 10.1093/bioinformatics/btx839.
4
Snaptron: querying splicing patterns across tens of thousands of RNA-seq samples.
Bioinformatics. 2018 Jan 1;34(1):114-116. doi: 10.1093/bioinformatics/btx547.
5
Intron-centric estimation of alternative splicing from RNA-seq data.
Bioinformatics. 2013 Jan 15;29(2):273-4. doi: 10.1093/bioinformatics/bts678. Epub 2012 Nov 21.
6
rSeqNP: a non-parametric approach for detecting differential expression and splicing from RNA-Seq data.
Bioinformatics. 2015 Jul 1;31(13):2222-4. doi: 10.1093/bioinformatics/btv119. Epub 2015 Feb 24.
7
MutSpliceDB: A database of splice sites variants with RNA-seq based evidence on effects on splicing.
Hum Mutat. 2021 Apr;42(4):342-345. doi: 10.1002/humu.24185. Epub 2021 Mar 1.
8
Ultra-deep sequencing reveals pre-mRNA splicing as a sequence driven high-fidelity process.
PLoS One. 2019 Oct 3;14(10):e0223132. doi: 10.1371/journal.pone.0223132. eCollection 2019.
9
Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM).
Bioinformatics. 2011 Sep 15;27(18):2518-28. doi: 10.1093/bioinformatics/btr427. Epub 2011 Jul 19.
10
Prediction and Quantification of Splice Events from RNA-Seq Data.
PLoS One. 2016 May 24;11(5):e0156132. doi: 10.1371/journal.pone.0156132. eCollection 2016.

引用本文的文献

1
Pan-Cancer Profiling of Intron Retention and Its Clinical Significance in Diagnosis and Prognosis.
Cancers (Basel). 2023 Dec 1;15(23):5689. doi: 10.3390/cancers15235689.
4
rMAPS2: an update of the RNA map analysis and plotting server for alternative splicing regulation.
Nucleic Acids Res. 2020 Jul 2;48(W1):W300-W306. doi: 10.1093/nar/gkaa237.
7
FOXP3 immunoregulatory gene variants are independent predictors of human papillomavirus infection and cervical cancer precursor lesions.
J Cancer Res Clin Oncol. 2019 Aug;145(8):2013-2025. doi: 10.1007/s00432-019-02951-x. Epub 2019 Jun 8.
8
Gene Regulatory Network Perturbation by Genetic and Epigenetic Variation.
Trends Biochem Sci. 2018 Aug;43(8):576-592. doi: 10.1016/j.tibs.2018.05.002. Epub 2018 Jun 22.
9
Systematic pan-cancer analysis of somatic allele frequency.
Sci Rep. 2018 May 16;8(1):7735. doi: 10.1038/s41598-018-25462-0.

本文引用的文献

1
Validation of predicted mRNA splicing mutations using high-throughput transcriptome data.
F1000Res. 2014 Jan 13;3:8. doi: 10.12688/f1000research.3-8.v2. eCollection 2014.
2
Exon identity crisis: disease-causing mutations that disrupt the splicing code.
Genome Biol. 2014 Jan 23;15(1):201. doi: 10.1186/gb4150.
3
MBNL proteins repress ES-cell-specific alternative splicing and reprogramming.
Nature. 2013 Jun 13;498(7453):241-5. doi: 10.1038/nature12270. Epub 2013 Jun 5.
5
Dynamic integration of splicing within gene regulatory pathways.
Cell. 2013 Mar 14;152(6):1252-69. doi: 10.1016/j.cell.2013.02.034.
6
Evolutionary dynamics of gene and isoform regulation in Mammalian tissues.
Science. 2012 Dec 21;338(6114):1593-9. doi: 10.1126/science.1228186.
7
The evolutionary landscape of alternative splicing in vertebrate species.
Science. 2012 Dec 21;338(6114):1587-93. doi: 10.1126/science.1230612.
8
SpliceAid-F: a database of human splicing factors and their RNA-binding sites.
Nucleic Acids Res. 2013 Jan;41(Database issue):D125-31. doi: 10.1093/nar/gks997. Epub 2012 Oct 30.
9
Exon and intron definition in pre-mRNA splicing.
Wiley Interdiscip Rev RNA. 2013 Jan-Feb;4(1):49-60. doi: 10.1002/wrna.1140. Epub 2012 Oct 8.
10
An integrated encyclopedia of DNA elements in the human genome.
Nature. 2012 Sep 6;489(7414):57-74. doi: 10.1038/nature11247.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验