Suppr超能文献

人类L型钙通道四个电压传感器的功能异质性。

Functional heterogeneity of the four voltage sensors of a human L-type calcium channel.

作者信息

Pantazis Antonios, Savalli Nicoletta, Sigg Daniel, Neely Alan, Olcese Riccardo

机构信息

Division of Molecular Medicine, Department of Anesthesiology.

dPET, Spokane, WA 99223; and.

出版信息

Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18381-6. doi: 10.1073/pnas.1411127112. Epub 2014 Dec 8.

Abstract

Excitation-evoked Ca(2+) influx is the fastest and most ubiquitous chemical trigger for cellular processes, including neurotransmitter release, muscle contraction, and gene expression. The voltage dependence and timing of Ca(2+) entry are thought to be functions of voltage-gated calcium (CaV) channels composed of a central pore regulated by four nonidentical voltage-sensing domains (VSDs I-IV). Currently, the individual voltage dependence and the contribution to pore opening of each VSD remain largely unknown. Using an optical approach (voltage-clamp fluorometry) to track the movement of the individual voltage sensors, we discovered that the four VSDs of CaV1.2 channels undergo voltage-evoked conformational rearrangements, each exhibiting distinct voltage- and time-dependent properties over a wide range of potentials and kinetics. The voltage dependence and fast kinetic components in the activation of VSDs II and III were compatible with the ionic current properties, suggesting that these voltage sensors are involved in CaV1.2 activation. This view is supported by an obligatory model, in which activation of VSDs II and III is necessary to open the pore. When these data were interpreted in view of an allosteric model, where pore opening is intrinsically independent but biased by VSD activation, VSDs II and III were each found to supply ∼50 meV (∼2 kT), amounting to ∼85% of the total energy, toward stabilizing the open state, with a smaller contribution from VSD I (∼16 meV). VSD IV did not appear to participate in channel opening.

摘要

兴奋诱发的Ca(2+)内流是细胞过程中最快且最普遍存在的化学触发因素,包括神经递质释放、肌肉收缩和基因表达。Ca(2+)进入的电压依赖性和时间被认为是由四个不同的电压感应结构域(VSDs I-IV)调节的中央孔道组成的电压门控钙(CaV)通道的功能。目前,各个VSD的电压依赖性以及对孔道开放的贡献在很大程度上仍然未知。通过一种光学方法(电压钳荧光法)来追踪各个电压传感器的运动,我们发现CaV1.2通道的四个VSD会经历电压诱发的构象重排,每个VSD在广泛的电位和动力学范围内都表现出独特的电压和时间依赖性特性。VSDs II和III激活过程中的电压依赖性和快速动力学成分与离子电流特性相符,这表明这些电压传感器参与了CaV1.2的激活。这一观点得到了一个必需模型的支持,在该模型中,VSDs II和III的激活是打开孔道所必需的。当根据变构模型来解释这些数据时,其中孔道开放本质上是独立的,但受VSD激活的影响,发现VSDs II和III各自为稳定开放状态提供约50毫电子伏特(约2kT),占总能量的约85%,而VSD I的贡献较小(约16毫电子伏特)。VSD IV似乎没有参与通道开放。

相似文献

1
Functional heterogeneity of the four voltage sensors of a human L-type calcium channel.
Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18381-6. doi: 10.1073/pnas.1411127112. Epub 2014 Dec 8.
2
The distinct role of the four voltage sensors of the skeletal CaV1.1 channel in voltage-dependent activation.
J Gen Physiol. 2021 Nov 1;153(11). doi: 10.1085/jgp.202112915. Epub 2021 Sep 21.
4
Voltage sensor movements of Ca1.1 during an action potential in skeletal muscle fibers.
Proc Natl Acad Sci U S A. 2021 Oct 5;118(40). doi: 10.1073/pnas.2026116118.
5
6
Structural determinants of voltage-gating properties in calcium channels.
Elife. 2021 Mar 30;10:e64087. doi: 10.7554/eLife.64087.
7
Ca1.1 voltage-sensing domain III exclusively controls skeletal muscle excitation-contraction coupling.
Nat Commun. 2024 Aug 28;15(1):7440. doi: 10.1038/s41467-024-51809-5.
8
Ion-pair interactions between voltage-sensing domain IV and pore domain I regulate Ca1.1 gating.
Biophys J. 2021 Oct 19;120(20):4429-4441. doi: 10.1016/j.bpj.2021.09.004. Epub 2021 Sep 8.

引用本文的文献

1
Voltage-sensing domains: structural and functional diversity.
Eur Biophys J. 2025 Sep 13. doi: 10.1007/s00249-025-01797-1.
2
The molecular transition that confers voltage dependence to muscle contraction.
Nat Commun. 2025 May 24;16(1):4847. doi: 10.1038/s41467-025-59649-7.
3
A rich conformational palette underlies human Ca2.1-channel availability.
Nat Commun. 2025 Apr 23;16(1):3815. doi: 10.1038/s41467-025-58884-2.
4
A Rich Conformational Palette Underlies Human Ca2.1-Channel Availability.
bioRxiv. 2024 Sep 30:2024.09.27.615501. doi: 10.1101/2024.09.27.615501.
5
Voltage-dependent G-protein regulation of Ca2.2 (N-type) channels.
Sci Adv. 2024 Sep 13;10(37):eadp6665. doi: 10.1126/sciadv.adp6665. Epub 2024 Sep 11.
6
Genetic Code Expansion for Mechanistic Studies in Ion Channels: An (Un)natural Union of Chemistry and Biology.
Chem Rev. 2024 Oct 23;124(20):11523-11543. doi: 10.1021/acs.chemrev.4c00306. Epub 2024 Aug 29.
7
Ca1.1 voltage-sensing domain III exclusively controls skeletal muscle excitation-contraction coupling.
Nat Commun. 2024 Aug 28;15(1):7440. doi: 10.1038/s41467-024-51809-5.
8
Fifty years of gating currents and channel gating.
J Gen Physiol. 2023 Aug 7;155(8). doi: 10.1085/jgp.202313380. Epub 2023 Jul 6.
9
Molecular insights into the gating mechanisms of voltage-gated calcium channel Ca2.3.
Nat Commun. 2023 Jan 31;14(1):516. doi: 10.1038/s41467-023-36260-2.
10
Functional Characterization of Four Known Cav2.1 Variants Associated with Neurodevelopmental Disorders.
Membranes (Basel). 2023 Jan 11;13(1):96. doi: 10.3390/membranes13010096.

本文引用的文献

1
Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels.
Front Physiol. 2014 Jun 3;5:209. doi: 10.3389/fphys.2014.00209. eCollection 2014.
2
Calmodulin regulation (calmodulation) of voltage-gated calcium channels.
J Gen Physiol. 2014 Jun;143(6):679-92. doi: 10.1085/jgp.201311153.
3
Evolutionary imprint of activation: the design principles of VSDs.
J Gen Physiol. 2014 Feb;143(2):145-56. doi: 10.1085/jgp.201311103.
4
The gating charge should not be estimated by fitting a two-state model to a Q-V curve.
J Gen Physiol. 2013 Dec;142(6):575-8. doi: 10.1085/jgp.201311056. Epub 2013 Nov 11.
5
Methods for quantification of pore-voltage sensor interaction in Ca(V)1.2.
Pflugers Arch. 2014 Feb;466(2):265-74. doi: 10.1007/s00424-013-1319-8. Epub 2013 Jul 20.
6
Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels.
J Gen Physiol. 2013 Aug;142(2):101-12. doi: 10.1085/jgp.201310998. Epub 2013 Jul 15.
7
L-type calcium channel targeting and local signalling in cardiac myocytes.
Cardiovasc Res. 2013 May 1;98(2):177-86. doi: 10.1093/cvr/cvt021. Epub 2013 Feb 14.
9
A linkage analysis toolkit for studying allosteric networks in ion channels.
J Gen Physiol. 2013 Jan;141(1):29-60. doi: 10.1085/jgp.201210859. Epub 2012 Dec 17.
10
The α2δ subunits of voltage-gated calcium channels.
Biochim Biophys Acta. 2013 Jul;1828(7):1541-9. doi: 10.1016/j.bbamem.2012.11.019. Epub 2012 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验