Suppr超能文献

用于组织工程的可生物降解聚合物支架的开源三维打印

Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering.

作者信息

Trachtenberg Jordan E, Mountziaris Paschalia M, Miller Jordan S, Wettergreen Matthew, Kasper Fred K, Mikos Antonios G

出版信息

J Biomed Mater Res A. 2014 Dec;102(12):4326-35. doi: 10.1002/jbm.a.35108.

Abstract

The fabrication of scaffolds for tissue engineering requires elements of customization depending on the application and is often limited due to the flexibility of the processing technique. This investigation seeks to address this obstacle by utilizing an open-source three-dimensional printing (3DP) system that allows vast customizability and facilitates reproduction of experiments. The effects of processing parameters on printed poly(ε-caprolactone) scaffolds with uniform and gradient pore architectures have been characterized with respect to fiber and pore morphology and mechanical properties. The results demonstrate the ability to tailor the fiber diameter, pore size, and porosity through modification of pressure, printing speed, and programmed fiber spacing. A model was also used to predict the compressive mechanical properties of uniform and gradient scaffolds, and it was found that modulus and yield strength declined with increasing porosity. The use of open-source 3DP technologies for printing tissue-engineering scaffolds provides a flexible system that can be readily modified at a low cost and is supported by community documentation. In this manner, the 3DP system is more accessible to the scientific community, which further facilitates the translation of these technologies toward successful tissue-engineering strategies.

摘要

用于组织工程的支架制造需要根据应用进行定制,并且由于加工技术的灵活性,往往受到限制。本研究旨在通过利用一种开源三维打印(3DP)系统来解决这一障碍,该系统具有高度的可定制性,并便于实验的重现。针对具有均匀和梯度孔隙结构的打印聚(ε-己内酯)支架,研究了加工参数对纤维和孔隙形态以及力学性能的影响。结果表明,通过改变压力、打印速度和编程纤维间距,可以调整纤维直径、孔径和孔隙率。还使用了一个模型来预测均匀和梯度支架的压缩力学性能,发现模量和屈服强度随孔隙率的增加而下降。使用开源3DP技术打印组织工程支架提供了一个灵活的系统,该系统可以以低成本轻松修改,并得到社区文档的支持。通过这种方式,3DP系统对科学界来说更容易获得,这进一步促进了这些技术向成功的组织工程策略的转化。

相似文献

1
Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering.
J Biomed Mater Res A. 2014 Dec;102(12):4326-35. doi: 10.1002/jbm.a.35108.
3
Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures.
Biomacromolecules. 2016 Jan 11;17(1):208-14. doi: 10.1021/acs.biomac.5b01316. Epub 2015 Dec 8.
4
Effects of poly (ε-caprolactone) coating on the properties of three-dimensional printed porous structures.
J Mech Behav Biomed Mater. 2017 Jun;70:68-83. doi: 10.1016/j.jmbbm.2016.04.035. Epub 2016 May 4.
5
Development of melt electrohydrodynamic 3D printing for complex microscale poly (ε-caprolactone) scaffolds.
Biofabrication. 2016 Aug 4;8(3):035008. doi: 10.1088/1758-5090/8/3/035008.
8
Development of three-dimensional printing polymer-ceramic scaffolds with enhanced compressive properties and tuneable resorption.
Mater Sci Eng C Mater Biol Appl. 2018 Dec 1;93:975-986. doi: 10.1016/j.msec.2018.08.048. Epub 2018 Aug 23.
9
Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching.
Mater Sci Eng C Mater Biol Appl. 2016 Apr 1;61:180-9. doi: 10.1016/j.msec.2015.12.032. Epub 2015 Dec 19.

引用本文的文献

1
3D printing method for bone tissue engineering scaffold.
Med Nov Technol Devices. 2023 Mar;17:None. doi: 10.1016/j.medntd.2022.100205.
3
Printability-A key issue in extrusion-based bioprinting.
J Pharm Anal. 2021 Oct;11(5):564-579. doi: 10.1016/j.jpha.2021.02.001. Epub 2021 Feb 10.
6
Three-dimensional Printing of Multilayered Tissue Engineering Scaffolds.
Mater Today (Kidlington). 2018 Oct;21(8):861-874. doi: 10.1016/j.mattod.2018.02.006. Epub 2018 Mar 20.
7
Open Design 3D-Printable Adjustable Micropipette that Meets the ISO Standard for Accuracy.
Micromachines (Basel). 2018 Apr 18;9(4):191. doi: 10.3390/mi9040191.
8
Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance.
Burns Trauma. 2018 Jul 3;6:19. doi: 10.1186/s41038-018-0121-4. eCollection 2018.
9
Engineering Breast Cancer Microenvironments and 3D Bioprinting.
Front Bioeng Biotechnol. 2018 May 24;6:66. doi: 10.3389/fbioe.2018.00066. eCollection 2018.

本文引用的文献

1
Three-dimensional drug printing: a structured review.
J Am Pharm Assoc (2003). 2013 Mar-Apr;53(2):136-44. doi: 10.1331/JAPhA.2013.12217.
2
Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering.
Biomatter. 2013 Apr-Jun;3(2). doi: 10.4161/biom.23705. Epub 2013 Jan 1.
3
Effects of humidity and solution viscosity on electrospun fiber morphology.
Tissue Eng Part C Methods. 2013 Oct;19(10):810-9. doi: 10.1089/ten.TEC.2012.0671. Epub 2013 Apr 10.
4
Fabrication and characterization of multiscale electrospun scaffolds for cartilage regeneration.
Biomed Mater. 2013 Feb;8(1):014103. doi: 10.1088/1748-6041/8/1/014103. Epub 2013 Jan 25.
5
Structure-property evaluation of thermally and chemically gelling injectable hydrogels for tissue engineering.
Biomacromolecules. 2012 Sep 10;13(9):2821-30. doi: 10.1021/bm300797m. Epub 2012 Aug 23.
6
Building bridges: leveraging interdisciplinary collaborations in the development of biomaterials to meet clinical needs.
Adv Mater. 2012 Sep 18;24(36):4995-5013. doi: 10.1002/adma.201201762. Epub 2012 Jul 23.
7
Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues.
Nat Mater. 2012 Sep;11(9):768-74. doi: 10.1038/nmat3357. Epub 2012 Jul 1.
9
Development of a biodegradable bone cement for craniofacial applications.
J Biomed Mater Res A. 2012 Sep;100(9):2252-9. doi: 10.1002/jbm.a.34157. Epub 2012 Apr 12.
10
Extrusion printed polymer structures: a facile and versatile approach to tailored drug delivery platforms.
Int J Pharm. 2012 Jan 17;422(1-2):254-63. doi: 10.1016/j.ijpharm.2011.11.007. Epub 2011 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验