Carey Shawn P, Rahman Aniqua, Kraning-Rush Casey M, Romero Bethsabe, Somasegar Sahana, Torre Olivia M, Williams Rebecca M, Reinhart-King Cynthia A
Department of Biomedical Engineering, Cornell University, Ithaca, New York.
Department of Biomedical Engineering, Cornell University, Ithaca, New York
Am J Physiol Cell Physiol. 2015 Mar 15;308(6):C436-47. doi: 10.1152/ajpcell.00225.2014. Epub 2014 Dec 10.
Tumor cell invasion through the stromal extracellular matrix (ECM) is a key feature of cancer metastasis, and understanding the cellular mechanisms of invasive migration is critical to the development of effective diagnostic and therapeutic strategies. Since cancer cell migration is highly adaptable to physiochemical properties of the ECM, it is critical to define these migration mechanisms in a context-specific manner. Although extensive work has characterized cancer cell migration in two- and three-dimensional (3D) matrix environments, the migration program employed by cells to move through native and cell-derived microtracks within the stromal ECM remains unclear. We previously reported the development of an in vitro model of patterned type I collagen microtracks that enable matrix metalloproteinase-independent microtrack migration. Here we show that collagen microtracks closely resemble channel-like gaps in native mammary stroma ECM and examine the extracellular and intracellular mechanisms underlying microtrack migration. Cell-matrix mechanocoupling, while critical for migration through 3D matrix, is not necessary for microtrack migration. Instead, cytoskeletal dynamics, including actin polymerization, cortical tension, and microtubule turnover, enable persistent, polarized migration through physiological microtracks. These results indicate that tumor cells employ context-specific mechanisms to migrate and suggest that selective targeting of cytoskeletal dynamics, but not adhesion, proteolysis, or cell traction forces, may effectively inhibit cancer cell migration through preformed matrix microtracks within the tumor stroma.
肿瘤细胞穿过基质细胞外基质(ECM)进行侵袭是癌症转移的一个关键特征,了解侵袭性迁移的细胞机制对于开发有效的诊断和治疗策略至关重要。由于癌细胞迁移对ECM的物理化学性质具有高度适应性,因此以背景特异性的方式定义这些迁移机制至关重要。尽管已有大量研究描述了癌细胞在二维和三维(3D)基质环境中的迁移情况,但细胞在基质ECM内通过天然和细胞衍生的微轨迹迁移所采用的迁移程序仍不清楚。我们之前报道了一种I型胶原微轨迹的体外模型的开发,该模型能够实现不依赖基质金属蛋白酶的微轨迹迁移。在此,我们表明胶原微轨迹与天然乳腺基质ECM中的通道样间隙非常相似,并研究了微轨迹迁移的细胞外和细胞内机制。细胞-基质机械偶联虽然对通过3D基质的迁移至关重要,但对微轨迹迁移并非必需。相反,细胞骨架动力学,包括肌动蛋白聚合、皮层张力和微管周转,能够使细胞通过生理性微轨迹进行持续的、极化的迁移。这些结果表明肿瘤细胞采用背景特异性机制进行迁移,并提示选择性靶向细胞骨架动力学,而非黏附、蛋白水解或细胞牵引力,可能有效抑制癌细胞通过肿瘤基质内预先形成的基质微轨迹进行迁移。