Suppr超能文献

Tup家族共抑制因子和CCAAT结合因子对染色质及mRNA起始位点选择的拮抗调控

Antagonistic controls of chromatin and mRNA start site selection by Tup family corepressors and the CCAAT-binding factor.

作者信息

Asada Ryuta, Takemata Naomichi, Hoffman Charles S, Ohta Kunihiro, Hirota Kouji

机构信息

Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan.

Department of Life Sciences, The University of Tokyo, Tokyo, Japan.

出版信息

Mol Cell Biol. 2015 Mar;35(5):847-55. doi: 10.1128/MCB.00924-14. Epub 2014 Dec 22.

Abstract

The Tup family corepressors contribute to critical cellular responses, such as the stress response and differentiation, presumably by inducing repressive chromatin, though the precise repression mechanism remains to be elucidated. The Schizosaccharomyces pombe fission yeast Tup family corepressors Tup11 and Tup12 (Tup11/12), which are orthologs of Tup1 in Saccharomyces cerevisiae budding yeast and Groucho in Drosophila, negatively control chromatin and the transcriptional activity of some stress-responsive genes. Here, we demonstrate that Tup11/12 repress transcription of a gluconeogenesis gene, fbp1⁺, by three distinct mechanisms. First, Tup11/12 inhibit chromatin remodeling in the fbp1⁺ promoter region where the Atf1 and Rst2 transcriptional activators bind. Second, they repress the formation of an open chromatin configuration at the fbp1⁺ TATA box. Third, they repress mRNA transcription per se by regulating basic transcription factors. These inhibitory actions of Tup11/12 are antagonized by three different types of transcriptional activators: CREB/ATF-type Atf1, C₂H₂zinc finger-type Rst2, and CBF/NF-Y-type Php5 proteins. We also found that impaired chromatin remodeling and fbp1⁺ mRNA transcription in php5Δ strains are rescued by the double deletions of tup11⁺ and tup12⁺, although the distribution of the transcription start sites becomes broader than that in wild-type cells. These data reveal a new mechanism of precise determination of the mRNA start site by Tup family corepressors and CBF/NF-Y proteins.

摘要

Tup家族共抑制因子可能通过诱导抑制性染色质来促进关键的细胞反应,如应激反应和分化,尽管具体的抑制机制仍有待阐明。粟酒裂殖酵母中的Tup家族共抑制因子Tup11和Tup12(Tup11/12)是酿酒酵母中Tup1和果蝇中Groucho的直系同源物,它们对某些应激反应基因的染色质和转录活性起负调控作用。在此,我们证明Tup11/12通过三种不同机制抑制糖异生基因fbp1⁺的转录。首先,Tup11/12抑制Atf1和Rst2转录激活因子结合的fbp1⁺启动子区域的染色质重塑。其次,它们抑制fbp1⁺ TATA框处开放染色质构型的形成。第三,它们通过调节基本转录因子来抑制mRNA转录本身。Tup11/12的这些抑制作用被三种不同类型的转录激活因子拮抗:CREB/ATF型的Atf1、C₂H₂锌指型的Rst2和CBF/NF-Y型的Php5蛋白。我们还发现,尽管转录起始位点的分布比野生型细胞中的更宽,但tup11⁺和tup12⁺的双缺失可挽救php5Δ菌株中受损的染色质重塑和fbp1⁺ mRNA转录。这些数据揭示了Tup家族共抑制因子和CBF/NF-Y蛋白精确确定mRNA起始位点的新机制。

相似文献

1
Antagonistic controls of chromatin and mRNA start site selection by Tup family corepressors and the CCAAT-binding factor.
Mol Cell Biol. 2015 Mar;35(5):847-55. doi: 10.1128/MCB.00924-14. Epub 2014 Dec 22.
4
Functional comparison of the Tup11 and Tup12 transcriptional corepressors in fission yeast.
Mol Cell Biol. 2005 Jan;25(2):716-27. doi: 10.1128/MCB.25.2.716-727.2005.
9
The LAMMER kinase homolog, Lkh1, regulates Tup transcriptional repressors through phosphorylation in Schizosaccharomyces pombe.
J Biol Chem. 2010 Apr 30;285(18):13797-806. doi: 10.1074/jbc.M110.113555. Epub 2010 Mar 3.
10
Role of fission yeast Tup1-like repressors and Prr1 transcription factor in response to salt stress.
Mol Biol Cell. 2002 Sep;13(9):2977-89. doi: 10.1091/mbc.01-12-0568.

引用本文的文献

1
Metabolic stress-induced long ncRNA transcription governs the formation of meiotic DNA breaks in the fission yeast fbp1 gene.
PLoS One. 2024 Jan 22;19(1):e0294191. doi: 10.1371/journal.pone.0294191. eCollection 2024.
5
lncRNA transcription induces meiotic recombination through chromatin remodelling in fission yeast.
Commun Biol. 2021 Mar 5;4(1):295. doi: 10.1038/s42003-021-01798-8.
6
Topoisomerase activity is linked to altered nucleosome positioning and transcriptional regulation in the fission yeast fbp1 gene.
PLoS One. 2020 Nov 12;15(11):e0242348. doi: 10.1371/journal.pone.0242348. eCollection 2020.
8
A genome-wide analysis of carbon catabolite repression in Schizosaccharomyces pombe.
BMC Genomics. 2019 Mar 29;20(1):251. doi: 10.1186/s12864-019-5602-8.

本文引用的文献

1
The H2A/H2B-like histone-fold domain proteins at the crossroad between chromatin and different DNA metabolisms.
Transcription. 2013 May-Jun;4(3):114-9. doi: 10.4161/trns.25002. Epub 2013 May 16.
4
Regulation of chromatin by histone modifications.
Cell Res. 2011 Mar;21(3):381-95. doi: 10.1038/cr.2011.22. Epub 2011 Feb 15.
5
Transcription of mRNA-type long non-coding RNAs (mlonRNAs) disrupts chromatin array.
Commun Integr Biol. 2009;2(1):25-6. doi: 10.4161/cib.2.1.7378.
6
The biology of chromatin remodeling complexes.
Annu Rev Biochem. 2009;78:273-304. doi: 10.1146/annurev.biochem.77.062706.153223.
7
Cascade transcription of mRNA-type long non-coding RNAs (mlonRNAs) and local chromatin remodeling.
Epigenetics. 2009 Jan;4(1):5-7. doi: 10.4161/epi.4.1.7353. Epub 2009 Jan 6.
8
Stepwise chromatin remodelling by a cascade of transcription initiation of non-coding RNAs.
Nature. 2008 Nov 6;456(7218):130-4. doi: 10.1038/nature07348. Epub 2008 Sep 28.
9
Groucho/Tup1 family co-repressors in plant development.
Trends Plant Sci. 2008 Mar;13(3):137-44. doi: 10.1016/j.tplants.2007.12.005. Epub 2008 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验