Suppr超能文献

一种最近发现的变构抑制剂阻断转化细胞中谷氨酰胺代谢的机制。

Mechanism by which a recently discovered allosteric inhibitor blocks glutamine metabolism in transformed cells.

作者信息

Stalnecker Clint A, Ulrich Scott M, Li Yunxing, Ramachandran Sekar, McBrayer Mary Kate, DeBerardinis Ralph J, Cerione Richard A, Erickson Jon W

机构信息

Departments of Chemistry and Chemical Biology and.

Department of Chemistry, Ithaca College, Ithaca, NY 14850;

出版信息

Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):394-9. doi: 10.1073/pnas.1414056112. Epub 2014 Dec 29.

Abstract

The mitochondrial enzyme glutaminase C (GAC) catalyzes the hydrolysis of glutamine to glutamate plus ammonia, a key step in the metabolism of glutamine by cancer cells. Recently, we discovered a class of allosteric inhibitors of GAC that inhibit cancer cell growth without affecting their normal cellular counterparts, with the lead compound being the bromo-benzophenanthridinone 968. Here, we take advantage of mouse embryonic fibroblasts transformed by oncogenic Dbl, which hyperactivates Rho GTPases, together with (13)C-labeled glutamine and stable-isotope tracing methods, to establish that 968 selectively blocks the enhancement in glutaminolysis necessary for satisfying the glutamine addiction of cancer cells. We then determine how 968 inhibits the catalytic activity of GAC. First, we developed a FRET assay to examine the effects of 968 on the ability of GAC to undergo the dimer-to-tetramer transition necessary for enzyme activation. We next demonstrate how the fluorescence of a reporter group attached to GAC provides a direct read-out of the binding of 968 and related compounds to the enzyme. By combining these fluorescence assays with newly developed GAC mutants trapped in either the monomeric or dimeric state, we show that 968 has the highest affinity for monomeric GAC and that the dose-dependent binding of 968 to GAC monomers directly matches its dose-dependent inhibition of enzyme activity and cellular transformation. Together, these findings highlight the requirement of tetramer formation as the mechanism of GAC activation and shed new light on how a distinct class of allosteric GAC inhibitors impacts the metabolic program of transformed cells.

摘要

线粒体酶谷氨酰胺酶C(GAC)催化谷氨酰胺水解生成谷氨酸和氨,这是癌细胞谷氨酰胺代谢中的关键步骤。最近,我们发现了一类GAC的变构抑制剂,它们能抑制癌细胞生长而不影响其正常细胞对应物,先导化合物为溴代苯菲啶酮968。在此,我们利用由致癌性Dbl转化的小鼠胚胎成纤维细胞(其使Rho GTPases过度激活),结合¹³C标记的谷氨酰胺和稳定同位素示踪方法,来确定968能选择性地阻断满足癌细胞谷氨酰胺成瘾所需的谷氨酰胺分解增强。然后我们确定968如何抑制GAC的催化活性。首先,我们开发了一种荧光共振能量转移(FRET)测定法,以研究968对GAC进行酶激活所需的二聚体到四聚体转变能力的影响。接下来,我们展示了连接到GAC上的报告基团的荧光如何直接读出968及相关化合物与该酶的结合情况。通过将这些荧光测定法与新开发的被困在单体或二聚体状态的GAC突变体相结合,我们表明968对单体GAC具有最高亲和力,并且968与GAC单体的剂量依赖性结合直接与其对酶活性和细胞转化的剂量依赖性抑制相匹配。总之,这些发现突出了四聚体形成作为GAC激活机制的必要性,并为一类独特的变构GAC抑制剂如何影响转化细胞的代谢程序提供了新的见解。

相似文献

1
Mechanism by which a recently discovered allosteric inhibitor blocks glutamine metabolism in transformed cells.
Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):394-9. doi: 10.1073/pnas.1414056112. Epub 2014 Dec 29.
2
The activation loop and substrate-binding cleft of glutaminase C are allosterically coupled.
J Biol Chem. 2020 Jan 31;295(5):1328-1337. doi: 10.1074/jbc.RA119.010314. Epub 2019 Dec 23.
5
High-resolution structures of mitochondrial glutaminase C tetramers indicate conformational changes upon phosphate binding.
J Biol Chem. 2022 Feb;298(2):101564. doi: 10.1016/j.jbc.2022.101564. Epub 2022 Jan 6.
6
Full-length human glutaminase in complex with an allosteric inhibitor.
Biochemistry. 2011 Dec 20;50(50):10764-70. doi: 10.1021/bi201613d. Epub 2011 Nov 18.
7
Mechanistic Basis of Glutaminase Activation: A KEY ENZYME THAT PROMOTES GLUTAMINE METABOLISM IN CANCER CELLS.
J Biol Chem. 2016 Sep 30;291(40):20900-20910. doi: 10.1074/jbc.M116.720268. Epub 2016 Aug 19.
9
Targeting mitochondrial glutaminase activity inhibits oncogenic transformation.
Cancer Cell. 2010 Sep 14;18(3):207-19. doi: 10.1016/j.ccr.2010.08.009.

引用本文的文献

1
A hormetic response model for glutamine stress in cancer.
Trends Cancer. 2025 Mar;11(3):196-203. doi: 10.1016/j.trecan.2024.11.008. Epub 2024 Dec 16.
2
Glutamine metabolism is essential for coronavirus replication in host cells and in mice.
J Biol Chem. 2025 Jan;301(1):108063. doi: 10.1016/j.jbc.2024.108063. Epub 2024 Dec 9.
3
Targeting pivotal amino acids metabolism for treatment of leukemia.
Heliyon. 2024 Nov 16;10(23):e40492. doi: 10.1016/j.heliyon.2024.e40492. eCollection 2024 Dec 15.
4
Exploiting the Achilles' heel of cancer: disrupting glutamine metabolism for effective cancer treatment.
Front Pharmacol. 2024 Mar 6;15:1345522. doi: 10.3389/fphar.2024.1345522. eCollection 2024.
5
Filament formation drives catalysis by glutaminase enzymes important in cancer progression.
Nat Commun. 2024 Mar 4;15(1):1971. doi: 10.1038/s41467-024-46351-3.
6
Glutamine addiction in tumor cell: oncogene regulation and clinical treatment.
Cell Commun Signal. 2024 Jan 3;22(1):12. doi: 10.1186/s12964-023-01449-x.
8
Glutaminolysis and peripheral CD4 T cell differentiation: from mechanism to intervention strategy.
Front Immunol. 2023 Jul 21;14:1221530. doi: 10.3389/fimmu.2023.1221530. eCollection 2023.
9
Therapeutic Targeting of Glutaminolysis as a Novel Strategy to Combat Cancer Stem Cells.
Int J Mol Sci. 2022 Dec 4;23(23):15296. doi: 10.3390/ijms232315296.
10
Identification and characterization of a novel glutaminase inhibitor.
FEBS Open Bio. 2022 Jan;12(1):163-174. doi: 10.1002/2211-5463.13319. Epub 2021 Nov 8.

本文引用的文献

2
Glutamine and cancer: cell biology, physiology, and clinical opportunities.
J Clin Invest. 2013 Sep;123(9):3678-84. doi: 10.1172/JCI69600. Epub 2013 Sep 3.
3
Active glutaminase C self-assembles into a supratetrameric oligomer that can be disrupted by an allosteric inhibitor.
J Biol Chem. 2013 Sep 27;288(39):28009-20. doi: 10.1074/jbc.M113.501346. Epub 2013 Aug 8.
4
Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway.
Nature. 2013 Apr 4;496(7443):101-5. doi: 10.1038/nature12040. Epub 2013 Mar 27.
5
Analysis of glutamine dependency in non-small cell lung cancer: GLS1 splice variant GAC is essential for cancer cell growth.
Cancer Biol Ther. 2012 Oct;13(12):1185-94. doi: 10.4161/cbt.21348. Epub 2012 Aug 15.
7
Dibenzophenanthridines as inhibitors of glutaminase C and cancer cell proliferation.
Mol Cancer Ther. 2012 Jun;11(6):1269-78. doi: 10.1158/1535-7163.MCT-11-0942. Epub 2012 Apr 11.
8
Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism.
Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1092-7. doi: 10.1073/pnas.1112495109. Epub 2012 Jan 6.
9
Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells.
Cell Metab. 2012 Jan 4;15(1):110-21. doi: 10.1016/j.cmet.2011.12.009.
10
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia.
Nature. 2011 Nov 20;481(7381):380-4. doi: 10.1038/nature10602.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验