Stalnecker Clint A, Ulrich Scott M, Li Yunxing, Ramachandran Sekar, McBrayer Mary Kate, DeBerardinis Ralph J, Cerione Richard A, Erickson Jon W
Departments of Chemistry and Chemical Biology and.
Department of Chemistry, Ithaca College, Ithaca, NY 14850;
Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):394-9. doi: 10.1073/pnas.1414056112. Epub 2014 Dec 29.
The mitochondrial enzyme glutaminase C (GAC) catalyzes the hydrolysis of glutamine to glutamate plus ammonia, a key step in the metabolism of glutamine by cancer cells. Recently, we discovered a class of allosteric inhibitors of GAC that inhibit cancer cell growth without affecting their normal cellular counterparts, with the lead compound being the bromo-benzophenanthridinone 968. Here, we take advantage of mouse embryonic fibroblasts transformed by oncogenic Dbl, which hyperactivates Rho GTPases, together with (13)C-labeled glutamine and stable-isotope tracing methods, to establish that 968 selectively blocks the enhancement in glutaminolysis necessary for satisfying the glutamine addiction of cancer cells. We then determine how 968 inhibits the catalytic activity of GAC. First, we developed a FRET assay to examine the effects of 968 on the ability of GAC to undergo the dimer-to-tetramer transition necessary for enzyme activation. We next demonstrate how the fluorescence of a reporter group attached to GAC provides a direct read-out of the binding of 968 and related compounds to the enzyme. By combining these fluorescence assays with newly developed GAC mutants trapped in either the monomeric or dimeric state, we show that 968 has the highest affinity for monomeric GAC and that the dose-dependent binding of 968 to GAC monomers directly matches its dose-dependent inhibition of enzyme activity and cellular transformation. Together, these findings highlight the requirement of tetramer formation as the mechanism of GAC activation and shed new light on how a distinct class of allosteric GAC inhibitors impacts the metabolic program of transformed cells.
线粒体酶谷氨酰胺酶C(GAC)催化谷氨酰胺水解生成谷氨酸和氨,这是癌细胞谷氨酰胺代谢中的关键步骤。最近,我们发现了一类GAC的变构抑制剂,它们能抑制癌细胞生长而不影响其正常细胞对应物,先导化合物为溴代苯菲啶酮968。在此,我们利用由致癌性Dbl转化的小鼠胚胎成纤维细胞(其使Rho GTPases过度激活),结合¹³C标记的谷氨酰胺和稳定同位素示踪方法,来确定968能选择性地阻断满足癌细胞谷氨酰胺成瘾所需的谷氨酰胺分解增强。然后我们确定968如何抑制GAC的催化活性。首先,我们开发了一种荧光共振能量转移(FRET)测定法,以研究968对GAC进行酶激活所需的二聚体到四聚体转变能力的影响。接下来,我们展示了连接到GAC上的报告基团的荧光如何直接读出968及相关化合物与该酶的结合情况。通过将这些荧光测定法与新开发的被困在单体或二聚体状态的GAC突变体相结合,我们表明968对单体GAC具有最高亲和力,并且968与GAC单体的剂量依赖性结合直接与其对酶活性和细胞转化的剂量依赖性抑制相匹配。总之,这些发现突出了四聚体形成作为GAC激活机制的必要性,并为一类独特的变构GAC抑制剂如何影响转化细胞的代谢程序提供了新的见解。