Suppr超能文献

利用多种数据源鉴定酵母中的协同转录因子。

Identifying cooperative transcription factors in yeast using multiple data sources.

作者信息

Lai Fu-Jou, Jhu Mei-Huei, Chiu Chia-Chun, Huang Yueh-Min, Wu Wei-Sheng

出版信息

BMC Syst Biol. 2014;8 Suppl 5(Suppl 5):S2. doi: 10.1186/1752-0509-8-S5-S2. Epub 2014 Dec 12.

Abstract

BACKGROUND

Transcriptional regulation of gene expression is usually accomplished by multiple interactive transcription factors (TFs). Therefore, it is crucial to understand the precise cooperative interactions among TFs. Various kinds of experimental data including ChIP-chip, TF binding site (TFBS), gene expression, TF knockout and protein-protein interaction data have been used to identify cooperative TF pairs in existing methods. The nucleosome occupancy data is not yet used for this research topic despite that several researches have revealed the association between nucleosomes and TFBSs.

RESULTS

In this study, we developed a novel method to infer the cooperativity between two TFs by integrating the TF-gene documented regulation, TFBS and nucleosome occupancy data. TF-gene documented regulation and TFBS data were used to determine the target genes of a TF, and the genome-wide nucleosome occupancy data was used to assess the nucleosome occupancy on TFBSs. Our method identifies cooperative TF pairs based on two biologically plausible assumptions. If two TFs cooperate, then (i) they should have a significantly higher number of common target genes than random expectation and (ii) their binding sites (in the promoters of their common target genes) should tend to be co-depleted of nucleosomes in order to make these binding sites simultaneously accessible to TF binding. Each TF pair is given a cooperativity score by our method. The higher the score is, the more likely a TF pair has cooperativity. Finally, a list of 27 cooperative TF pairs has been predicted by our method. Among these 27 TF pairs, 19 pairs are also predicted by existing methods. The other 8 pairs are novel cooperative TF pairs predicted by our method. The biological relevance of these 8 novel cooperative TF pairs is justified by the existence of protein-protein interactions and co-annotation in the same MIPS functional categories. Moreover, we adopted three performance indices to compare our predictions with 11 existing methods' predictions. We show that our method performs better than these 11 existing methods in identifying cooperative TF pairs in yeast. Finally, the cooperative TF network constructed from the 27 predicted cooperative TF pairs shows that our method has the power to find cooperative TF pairs of different biological processes.

CONCLUSION

Our method is effective in identifying cooperative TF pairs in yeast. Many of our predictions are validated by the literature, and our method outperforms 11 existing methods. We believe that our study will help biologists to understand the mechanisms of transcriptional regulation in eukaryotic cells.

摘要

背景

基因表达的转录调控通常由多个相互作用的转录因子(TFs)完成。因此,了解TFs之间精确的协同相互作用至关重要。在现有方法中,包括染色质免疫沉淀芯片(ChIP-chip)、转录因子结合位点(TFBS)、基因表达、TF基因敲除和蛋白质-蛋白质相互作用数据等各种实验数据已被用于识别协同TF对。尽管有几项研究揭示了核小体与TFBS之间的关联,但核小体占据数据尚未用于该研究主题。

结果

在本研究中,我们开发了一种新方法,通过整合TF-基因记录的调控、TFBS和核小体占据数据来推断两个TF之间的协同性。TF-基因记录的调控和TFBS数据用于确定一个TF的靶基因,全基因组核小体占据数据用于评估TFBS上的核小体占据情况。我们的方法基于两个生物学上合理的假设来识别协同TF对。如果两个TF协同作用,那么(i)它们共同靶基因的数量应显著高于随机预期,并且(ii)它们的结合位点(在其共同靶基因的启动子中)应倾向于核小体共缺失,以便使这些结合位点同时可被TF结合。我们的方法为每个TF对给出一个协同性得分。得分越高,TF对具有协同性的可能性就越大。最后,我们的方法预测了27个协同TF对的列表。在这27个TF对中,19对也被现有方法预测到。另外八对是我们的方法预测的新型协同TF对。这八个新型协同TF对的生物学相关性通过蛋白质-蛋白质相互作用的存在以及在相同的MIPS功能类别中的共同注释得到了证实。此外,我们采用三个性能指标将我们的预测与11种现有方法的预测进行比较。我们表明,在识别酵母中的协同TF对方面,我们的方法比这11种现有方法表现更好。最后,由预测的27个协同TF对构建的协同TF网络表明,我们的方法有能力找到不同生物学过程的协同TF对。

结论

我们的方法在识别酵母中的协同TF对方面是有效的。我们的许多预测都得到了文献的验证,并且我们的方法优于11种现有方法。我们相信我们的研究将有助于生物学家理解真核细胞中转录调控的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a52/4305981/2196eac8068c/1752-0509-8-S5-S2-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验