Ma Xiucui, Liu Haiyan, Murphy John T, Foyil Sarah R, Godar Rebecca J, Abuirqeba Haedar, Weinheimer Carla J, Barger Philip M, Diwan Abhinav
Division of Cardiology and Center for Cardiovascular Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA John Cochran VA Medical Center, St. Louis, Missouri, USA.
Division of Cardiology and Center for Cardiovascular Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.
Mol Cell Biol. 2015 Mar;35(6):956-76. doi: 10.1128/MCB.01091-14. Epub 2015 Jan 5.
In cardiac ischemia-reperfusion injury, reactive oxygen species (ROS) generation and upregulation of the hypoxia-inducible protein BNIP3 result in mitochondrial permeabilization, but impairment in autophagic removal of damaged mitochondria provokes programmed cardiomyocyte death. BNIP3 expression and ROS generation result in upregulation of beclin-1, a protein associated with transcriptional suppression of autophagy-lysosome proteins and reduced activation of transcription factor EB (TFEB), a master regulator of the autophagy-lysosome machinery. Partial beclin-1 knockdown transcriptionally stimulates lysosome biogenesis and autophagy via mTOR inhibition and activation of TFEB, enhancing removal of depolarized mitochondria. TFEB activation concomitantly stimulates mitochondrial biogenesis via PGC1α induction to restore normally polarized mitochondria and attenuate BNIP3- and hypoxia-reoxygenation-induced cell death. Conversely, overexpression of beclin-1 activates mTOR to inhibit TFEB, resulting in declines in lysosome numbers and suppression of PGC1α transcription. Importantly, knockdown of endogenous TFEB or PGC1α results in a complete or partial loss, respectively, of the cytoprotective effects of partial beclin-1 knockdown, indicating a critical role for both mitochondrial autophagy and biogenesis in ensuring cellular viability. These studies uncover a transcriptional feedback loop for beclin-1-mediated regulation of TFEB activation and implicate a central role for TFEB in coordinating mitochondrial autophagy with biogenesis to restore normally polarized mitochondria and prevent ischemia-reperfusion-induced cardiomyocyte death.
在心脏缺血再灌注损伤中,活性氧(ROS)的产生以及缺氧诱导蛋白BNIP3的上调会导致线粒体通透性改变,但受损线粒体自噬清除功能的损害会引发程序性心肌细胞死亡。BNIP3的表达和ROS的产生会导致beclin-1上调,beclin-1是一种与自噬溶酶体蛋白转录抑制相关的蛋白,并且会降低自噬溶酶体机制的主要调节因子转录因子EB(TFEB)的激活。部分beclin-1基因敲低通过抑制mTOR和激活TFEB转录刺激溶酶体生物合成和自噬,增强对去极化线粒体的清除。TFEB的激活同时通过诱导PGC1α刺激线粒体生物合成,以恢复正常极化的线粒体,并减轻BNIP3和缺氧复氧诱导的细胞死亡。相反,beclin-1的过表达激活mTOR以抑制TFEB,导致溶酶体数量减少和PGC1α转录受到抑制。重要的是,内源性TFEB或PGC1α的基因敲低分别导致部分beclin-1基因敲低的细胞保护作用完全或部分丧失,这表明线粒体自噬和生物合成在确保细胞活力方面起着关键作用。这些研究揭示了beclin-1介导的TFEB激活调节的转录反馈回路,并暗示TFEB在协调线粒体自噬与生物合成以恢复正常极化线粒体和预防缺血再灌注诱导的心肌细胞死亡中起核心作用。