Suppr超能文献

基因组分类器ColoPrint在预测II期结直肠癌患者复发方面比临床因素更准确。

Genomic classifier ColoPrint predicts recurrence in stage II colorectal cancer patients more accurately than clinical factors.

作者信息

Kopetz Scott, Tabernero Josep, Rosenberg Robert, Jiang Zhi-Qin, Moreno Víctor, Bachleitner-Hofmann Thomas, Lanza Giovanni, Stork-Sloots Lisette, Maru Dipen, Simon Iris, Capellà Gabriel, Salazar Ramon

机构信息

Departments of Gastrointestinal Medical Oncology and Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Vall d'Hebron University Hospital and Institute of Oncology, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Surgery, Klinikum Rechts der Isar, Technische University, Munich, Germany; Institut Català d'Oncologia, IDIBELL L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Department of Surgery, Medical University of Vienna, Vienna, Austria; Department of Surgery, University of Ferrara, Ferrara, Italy; Agendia NV, Amsterdam, The Netherlands; Agendia Inc., Irvine, California, USA

Departments of Gastrointestinal Medical Oncology and Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Vall d'Hebron University Hospital and Institute of Oncology, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Surgery, Klinikum Rechts der Isar, Technische University, Munich, Germany; Institut Català d'Oncologia, IDIBELL L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Department of Surgery, Medical University of Vienna, Vienna, Austria; Department of Surgery, University of Ferrara, Ferrara, Italy; Agendia NV, Amsterdam, The Netherlands; Agendia Inc., Irvine, California, USA.

出版信息

Oncologist. 2015 Feb;20(2):127-33. doi: 10.1634/theoncologist.2014-0325. Epub 2015 Jan 5.

Abstract

BACKGROUND

Approximately 20% of patients with stage II colorectal cancer will experience a relapse. Current clinical-pathologic stratification factors do not allow clear identification of these high-risk patients. ColoPrint (Agendia, Amsterdam, The Netherlands, http://www.agendia.com) is a gene expression classifier that distinguishes patients with low or high risk of disease relapse.

METHODS

ColoPrint was developed using whole-genome expression data and validated in several independent validation cohorts. Stage II patients from these studies were pooled (n = 416), and ColoPrint was compared with clinical risk factors described in the National Comprehensive Cancer Network (NCCN) 2013 Guidelines for Colon Cancer. Median follow-up was 81 months. Most patients (70%) did not receive adjuvant chemotherapy. Risk of relapse (ROR) was defined as survival until first event of recurrence or death from cancer.

RESULTS

In the pooled stage II data set, ColoPrint identified 63% of patients as low risk with a 5-year ROR of 10%, whereas high-risk patients (37%) had a 5-year ROR of 21%, with a hazard ratio (HR) of 2.16 (p = .004). This remained significant in a multivariate model that included number of lymph nodes retrieved and microsatellite instability. In the T3 microsatellite-stable subgroup (n = 301), ColoPrint classified 59% of patients as low risk with a 5-year ROR of 9.9%. High-risk patients (31%) had a 22.4% ROR (HR: 2.41; p = .005). In contrast, the NCCN clinical high-risk factors were unable to distinguish high- and low-risk patients (15% vs. 13% ROR; p = .55).

CONCLUSION

ColoPrint significantly improved prognostic accuracy independent of microsatellite status or clinical variables, facilitating the identification of patients at higher risk who might be considered for additional treatment.

摘要

背景

约20%的II期结直肠癌患者会出现复发。目前的临床病理分层因素无法明确识别这些高危患者。ColoPrint(荷兰阿姆斯特丹的Agendia公司,网址:http://www.agendia.com)是一种基因表达分类器,可区分疾病复发风险低或高的患者。

方法

ColoPrint利用全基因组表达数据开发,并在多个独立验证队列中进行验证。将这些研究中的II期患者合并(n = 416),并将ColoPrint与《美国国立综合癌症网络(NCCN)2013年结肠癌临床实践指南》中描述的临床风险因素进行比较。中位随访时间为81个月。大多数患者(70%)未接受辅助化疗。复发风险(ROR)定义为直至首次复发事件或死于癌症的生存期。

结果

在合并的II期数据集中,ColoPrint将63%的患者识别为低风险,5年复发风险为10%,而高风险患者(37%)的5年复发风险为21%,风险比(HR)为2.16(p = 0.004)。在包含获取的淋巴结数量和微卫星不稳定性的多变量模型中,这一结果仍然显著。在T3微卫星稳定亚组(n = 301)中,ColoPrint将59%的患者分类为低风险,5年复发风险为9.9%。高风险患者(31%)的复发风险为22.4%(HR:2.41;p = 0.005)。相比之下,NCCN临床高危因素无法区分高风险和低风险患者(复发风险分别为15%和13%;p = 0.55)。

结论

ColoPrint显著提高了预后准确性,与微卫星状态或临床变量无关,有助于识别可能需要考虑额外治疗的高风险患者。

相似文献

1
Genomic classifier ColoPrint predicts recurrence in stage II colorectal cancer patients more accurately than clinical factors.
Oncologist. 2015 Feb;20(2):127-33. doi: 10.1634/theoncologist.2014-0325. Epub 2015 Jan 5.
2
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
4
High-dose chemotherapy and autologous haematopoietic stem cell rescue for children with high-risk neuroblastoma.
Cochrane Database Syst Rev. 2015 Oct 5;2015(10):CD006301. doi: 10.1002/14651858.CD006301.pub4.
5
High-dose chemotherapy and autologous haematopoietic stem cell rescue for children with high-risk neuroblastoma.
Cochrane Database Syst Rev. 2013 Aug 22(8):CD006301. doi: 10.1002/14651858.CD006301.pub3.
7
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.
Cochrane Database Syst Rev. 2022 Sep 26;9(9):CD015048. doi: 10.1002/14651858.CD015048.pub2.
9
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
10
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.

引用本文的文献

1
The prognostic potential of RNA in stage II colon cancer: Insights from a screened multicenter population-based cohort study.
Int J Cancer. 2025 Oct 15;157(8):1746-1755. doi: 10.1002/ijc.35507. Epub 2025 Jun 6.
3
The SCRUM-MONSTAR Cancer-Omics Ecosystem: Striving for a Quantum Leap in Precision Medicine.
Cancer Discov. 2024 Nov 1;14(11):2243-2261. doi: 10.1158/2159-8290.CD-24-0206.
4
Prognostic models for colorectal cancer recurrence using carcinoembryonic antigen measurements.
Front Oncol. 2024 May 30;14:1368120. doi: 10.3389/fonc.2024.1368120. eCollection 2024.
5
An invasion front gene expression signature for higher-risk patient selection in stage IIA MSS colon cancer.
Front Oncol. 2024 Apr 19;14:1367231. doi: 10.3389/fonc.2024.1367231. eCollection 2024.
6
Unraveling the role of tumor sidedness in prognosis of stage II colon cancer.
Gastroenterol Rep (Oxf). 2024 Apr 12;12:goae028. doi: 10.1093/gastro/goae028. eCollection 2024.
7
as a potential prognostic and predictive biomarker in stage II colorectal cancer.
J Gastrointest Oncol. 2024 Feb 29;15(1):179-189. doi: 10.21037/jgo-23-908. Epub 2024 Feb 28.
9
Integrating bulk and single-cell data to predict the prognosis and identify the immune landscape in HNSCC.
J Cell Mol Med. 2024 Jan;28(1):e18009. doi: 10.1111/jcmm.18009. Epub 2023 Oct 26.

本文引用的文献

2
Comparison of prognostic genomic predictors in colorectal cancer.
PLoS One. 2013 Apr 23;8(4):e60778. doi: 10.1371/journal.pone.0060778. Print 2013.
3
Cancer statistics, 2013.
CA Cancer J Clin. 2013 Jan;63(1):11-30. doi: 10.3322/caac.21166. Epub 2013 Jan 17.
5
Biomarkers in early-stage colorectal cancer: ready for prime time?
Dig Dis. 2012;30 Suppl 2:27-33. doi: 10.1159/000341890. Epub 2012 Nov 23.
6
Gene Signatures in Stage II Colon Cancer: A Clinical Review.
Curr Colorectal Cancer Rep. 2012 Sep;8(3):225-231. doi: 10.1007/s11888-012-0132-7.
9
Adjuvant chemotherapy for stage II colon cancer with poor prognostic features.
J Clin Oncol. 2011 Sep 1;29(25):3381-8. doi: 10.1200/JCO.2010.34.3426. Epub 2011 Jul 25.
10
Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer.
J Clin Oncol. 2011 Apr 1;29(10):1261-70. doi: 10.1200/JCO.2010.30.1366. Epub 2011 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验