Suppr超能文献

使用高通量筛选(HTS)数据训练的贝叶斯模型,用于预测β-血红素抑制和体外抗疟活性。

Bayesian models trained with HTS data for predicting β-haematin inhibition and in vitro antimalarial activity.

作者信息

Wicht Kathryn J, Combrinck Jill M, Smith Peter J, Egan Timothy J

机构信息

Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.

Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; Division of Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa.

出版信息

Bioorg Med Chem. 2015 Aug 15;23(16):5210-7. doi: 10.1016/j.bmc.2014.12.020. Epub 2014 Dec 20.

Abstract

A large quantity of high throughput screening (HTS) data for antimalarial activity has become available in recent years. This includes both phenotypic and target-based activity. Realising the maximum value of these data remains a challenge. In this respect, methods that allow such data to be used for virtual screening maximise efficiency and reduce costs. In this study both in vitro antimalarial activity and inhibitory data for β-haematin formation, largely obtained from publically available sources, has been used to develop Bayesian models for inhibitors of β-haematin formation and in vitro antimalarial activity. These models were used to screen two in silico compound libraries. In the first, the 1510 U.S. Food and Drug Administration approved drugs available on PubChem were ranked from highest to lowest Bayesian score based on a training set of β-haematin inhibiting compounds active against Plasmodium falciparum that did not include any of the clinical antimalarials or close analogues. The six known clinical antimalarials that inhibit β-haematin formation were ranked in the top 2.1% of compounds. Furthermore, the in vitro antimalarial hit-rate for this prioritised set of compounds was found to be 81% in the case of the subset where activity data are available in PubChem. In the second, a library of about 5000 commercially available compounds (Aldrich(CPR)) was virtually screened for ability to inhibit β-haematin formation and then for in vitro antimalarial activity. A selection of 34 compounds was purchased and tested, of which 24 were predicted to be β-haematin inhibitors. The hit rate for inhibition of β-haematin formation was found to be 25% and a third of these were active against P. falciparum, corresponding to enrichments estimated at about 25- and 140-fold relative to random screening, respectively.

摘要

近年来,已有大量关于抗疟活性的高通量筛选(HTS)数据。这包括表型活性和基于靶点的活性。实现这些数据的最大价值仍然是一项挑战。在这方面,允许将此类数据用于虚拟筛选的方法可最大限度地提高效率并降低成本。在本研究中,主要从公开可用来源获得的体外抗疟活性数据以及β-血红素形成的抑制数据,已被用于开发针对β-血红素形成抑制剂和体外抗疟活性的贝叶斯模型。这些模型被用于筛选两个计算机化合物库。在第一个库中,根据一组对恶性疟原虫有活性的β-血红素抑制化合物的训练集(其中不包括任何临床抗疟药或其类似物),对PubChem上可用的1510种美国食品药品监督管理局批准的药物按贝叶斯评分从高到低进行排序。六种已知的抑制β-血红素形成的临床抗疟药排在化合物的前2.1%。此外,对于在PubChem上有活性数据的子集,该组优先化合物的体外抗疟命中率为81%。在第二个库中,对约5000种市售化合物(Aldrich(CPR))的文库进行虚拟筛选,以检测其抑制β-血红素形成的能力,然后检测其体外抗疟活性。购买并测试了34种化合物的选择,其中24种被预测为β-血红素抑制剂。发现抑制β-血红素形成的命中率为25%,其中三分之一对恶性疟原虫有活性,相对于随机筛选,富集倍数估计分别约为25倍和140倍。

相似文献

1
Bayesian models trained with HTS data for predicting β-haematin inhibition and in vitro antimalarial activity.
Bioorg Med Chem. 2015 Aug 15;23(16):5210-7. doi: 10.1016/j.bmc.2014.12.020. Epub 2014 Dec 20.
2
Lapatinib, Nilotinib and Lomitapide Inhibit Haemozoin Formation in Malaria Parasites.
Molecules. 2020 Mar 29;25(7):1571. doi: 10.3390/molecules25071571.
4
Docking, synthesis and antimalarial activity of novel 4-anilinoquinoline derivatives.
Bioorg Med Chem Lett. 2017 Apr 15;27(8):1693-1697. doi: 10.1016/j.bmcl.2017.03.005. Epub 2017 Mar 6.
6
In vitro antimalarial activity, β-haematin inhibition and structure-activity relationships in a series of quinoline triazoles.
Eur J Med Chem. 2013 Nov;69:338-47. doi: 10.1016/j.ejmech.2013.08.046. Epub 2013 Sep 12.
7
THC shows activity against cultured Plasmodium falciparum.
Bioorg Med Chem Lett. 2021 Dec 15;54:128442. doi: 10.1016/j.bmcl.2021.128442. Epub 2021 Nov 8.
8
Novel phenothiazine antimalarials: synthesis, antimalarial activity, and inhibition of the formation of beta-haematin.
Biochem Pharmacol. 2002 Mar 1;63(5):833-42. doi: 10.1016/s0006-2952(01)00840-1.
9
Prediction Model for Antimalarial Activities of Hemozoin Inhibitors by Using Physicochemical Properties.
Antimicrob Agents Chemother. 2018 Apr 26;62(5). doi: 10.1128/AAC.02424-17. Print 2018 May.
10
Antimalarial drugs inhibiting hemozoin (beta-hematin) formation: a mechanistic update.
Life Sci. 2007 Feb 6;80(9):813-28. doi: 10.1016/j.lfs.2006.11.008. Epub 2006 Nov 10.

引用本文的文献

1
1-Sulfonyl-3-amino-1-1,2,4-triazoles as Yellow Fever Virus Inhibitors: Synthesis and Structure-Activity Relationship.
ACS Omega. 2023 Nov 1;8(45):42951-42965. doi: 10.1021/acsomega.3c06106. eCollection 2023 Nov 14.
3
Adsorption to the Surface of Hemozoin Crystals: Structure-Based Design and Synthesis of Amino-Phenoxazine β-Hematin Inhibitors.
ChemMedChem. 2022 May 18;17(10):e202200139. doi: 10.1002/cmdc.202200139. Epub 2022 Apr 26.
4
Development of Machine Learning Models and the Discovery of a New Antiviral Compound against Yellow Fever Virus.
J Chem Inf Model. 2021 Aug 23;61(8):3804-3813. doi: 10.1021/acs.jcim.1c00460. Epub 2021 Jul 21.
5
Heme Detoxification in the Malaria Parasite: A Target for Antimalarial Drug Development.
Acc Chem Res. 2021 Jun 1;54(11):2649-2659. doi: 10.1021/acs.accounts.1c00154. Epub 2021 May 13.
6
Use of Artificial Intelligence and Machine Learning for Discovery of Drugs for Neglected Tropical Diseases.
Front Chem. 2021 Mar 15;9:614073. doi: 10.3389/fchem.2021.614073. eCollection 2021.
7
Lapatinib, Nilotinib and Lomitapide Inhibit Haemozoin Formation in Malaria Parasites.
Molecules. 2020 Mar 29;25(7):1571. doi: 10.3390/molecules25071571.
9
Hemozoin inhibiting 2-phenylbenzimidazoles active against malaria parasites.
Eur J Med Chem. 2018 Nov 5;159:243-254. doi: 10.1016/j.ejmech.2018.09.060. Epub 2018 Sep 28.
10
Prediction Model for Antimalarial Activities of Hemozoin Inhibitors by Using Physicochemical Properties.
Antimicrob Agents Chemother. 2018 Apr 26;62(5). doi: 10.1128/AAC.02424-17. Print 2018 May.

本文引用的文献

1
Identification of β-hematin inhibitors in a high-throughput screening effort reveals scaffolds with in vitro antimalarial activity.
Int J Parasitol Drugs Drug Resist. 2014 Sep 11;4(3):316-25. doi: 10.1016/j.ijpddr.2014.08.002. eCollection 2014 Dec.
2
Introduction of a methodology for visualization and graphical interpretation of Bayesian classification models.
J Chem Inf Model. 2014 Sep 22;54(9):2451-68. doi: 10.1021/ci500410g. Epub 2014 Aug 27.
3
Discovery of highly selective 7-chloroquinoline-thiohydantoins with potent antimalarial activity.
Eur J Med Chem. 2014 Sep 12;84:425-32. doi: 10.1016/j.ejmech.2014.07.048. Epub 2014 Jul 15.
6
A molecular marker of artemisinin-resistant Plasmodium falciparum malaria.
Nature. 2014 Jan 2;505(7481):50-5. doi: 10.1038/nature12876. Epub 2013 Dec 18.
7
Prediction of the P. falciparum target space relevant to malaria drug discovery.
PLoS Comput Biol. 2013;9(10):e1003257. doi: 10.1371/journal.pcbi.1003257. Epub 2013 Oct 17.
8
Predictions of BuChE inhibitors using support vector machine and naive Bayesian classification techniques in drug discovery.
J Chem Inf Model. 2013 Nov 25;53(11):3009-20. doi: 10.1021/ci400331p. Epub 2013 Nov 6.
9
Combining computational methods for hit to lead optimization in Mycobacterium tuberculosis drug discovery.
Pharm Res. 2014 Feb;31(2):414-35. doi: 10.1007/s11095-013-1172-7. Epub 2013 Oct 17.
10
In vitro antimalarial activity, β-haematin inhibition and structure-activity relationships in a series of quinoline triazoles.
Eur J Med Chem. 2013 Nov;69:338-47. doi: 10.1016/j.ejmech.2013.08.046. Epub 2013 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验