Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg (Germany); LOEWE Center for Synthetic Microbiology (Synmikro), Philipps-University Marburg, Hans-Meerwein-Strasse, 35032 Marburg (Germany).
Angew Chem Int Ed Engl. 2015 Feb 16;54(8):2492-6. doi: 10.1002/anie.201410047. Epub 2015 Jan 12.
The incorporation of non-proteinogenic amino acids represents a major challenge for the creation of functionalized proteins. The ribosomal pathway is limited to the 20-22 proteinogenic amino acids while nonribosomal peptide synthetases (NRPSs) are able to select from hundreds of different monomers. Introduced herein is a fusion-protein-based design for synthetic tRNA-aminoacylation catalysts based on combining NRPS adenylation domains and a small eukaryotic tRNA-binding domain (Arc1p-C). Using rational design, guided by structural insights and molecular modeling, the adenylation domain PheA was fused with Arc1p-C using flexible linkers and achieved tRNA-aminoacylation with both proteinogenic and non-proteinogenic amino acids. The resulting aminoacyl-tRNAs were functionally validated and the catalysts showed broad substrate specificity towards the acceptor tRNA. Our strategy shows how functional tRNA-aminoacylation catalysts can be created for bridging the ribosomal and nonribosomal worlds. This opens up new avenues for the aminoacylation of tRNAs with functional non-proteinogenic amino acids.
将非天然氨基酸掺入代表了对功能化蛋白质的创建的主要挑战。核糖体途径仅限于 20-22 种蛋白质氨基酸,而非核糖体肽合成酶(NRPS)能够从数百种不同的单体中选择。本文介绍了一种基于融合蛋白的合成 tRNA-氨酰化催化剂的设计,该设计基于结合 NRPS 腺苷酸化结构域和一个小的真核 tRNA 结合结构域(Arc1p-C)。通过合理的设计,根据结构见解和分子建模的指导,将苯丙氨酸腺苷酸化结构域与 Arc1p-C 用柔性接头融合,并实现了蛋白质和非蛋白质氨基酸的 tRNA-氨酰化。所得的氨酰-tRNA 进行了功能验证,并且催化剂对接受 tRNA 具有广泛的底物特异性。我们的策略展示了如何为连接核糖体和非核糖体世界创建功能性 tRNA-氨酰化催化剂。这为用功能性非蛋白质氨基酸对 tRNA 进行氨酰化开辟了新途径。