Suppr超能文献

mTORC1 激活可阻断 BrafV600E 诱导的生长停滞,但不足以形成黑色素瘤。

mTORC1 activation blocks BrafV600E-induced growth arrest but is insufficient for melanoma formation.

机构信息

Department of Dermatology, Yale University, New Haven, CT 06510, USA.

Department of Dermatology, Yale University, New Haven, CT 06510, USA; Department of Pathology, Yale University, New Haven, CT 06510, USA.

出版信息

Cancer Cell. 2015 Jan 12;27(1):41-56. doi: 10.1016/j.ccell.2014.11.014.

Abstract

Braf(V600E) induces benign, growth-arrested melanocytic nevus development, but also drives melanoma formation. Cdkn2a loss in Braf(V600E) melanocytes in mice results in rare progression to melanoma, but only after stable growth arrest as nevi. Immediate progression to melanoma is prevented by upregulation of miR-99/100, which downregulates mTOR and IGF1R signaling. mTORC1 activation through Stk11 (Lkb1) loss abrogates growth arrest of Braf(V600E) melanocytic nevi, but is insufficient for complete progression to melanoma. Cdkn2a loss is associated with mTORC2 and Akt activation in human and murine melanocytic neoplasms. Simultaneous Cdkn2a and Lkb1 inactivation in Braf(V600E) melanocytes results in activation of both mTORC1 and mTORC2/Akt, inducing rapid melanoma formation in mice. In this model, activation of both mTORC1/2 is required for Braf-induced melanomagenesis.

摘要

Braf(V600E) 可诱导良性、生长停滞的黑素细胞痣发育,但也可驱动黑色素瘤形成。在 Braf(V600E)黑素细胞中缺失 Cdkn2a 会导致罕见的黑色素瘤进展,但仅在稳定的生长停滞为痣后才会发生。miR-99/100 的上调可防止黑色素瘤的即刻进展,其下调 mTOR 和 IGF1R 信号。Stk11 (Lkb1) 缺失导致 mTORC1 的激活可消除 Braf(V600E)黑素细胞痣的生长停滞,但不足以完全进展为黑色素瘤。Cdkn2a 缺失与人类和鼠类黑素细胞肿瘤中的 mTORC2 和 Akt 激活有关。Braf(V600E)黑素细胞中同时缺失 Cdkn2a 和 Lkb1 会导致 mTORC1 和 mTORC2/Akt 的激活,从而在小鼠中迅速诱导黑色素瘤形成。在该模型中,mTORC1/2 的激活均是 Braf 诱导的黑色素瘤发生所必需的。

相似文献

1
mTORC1 activation blocks BrafV600E-induced growth arrest but is insufficient for melanoma formation.
Cancer Cell. 2015 Jan 12;27(1):41-56. doi: 10.1016/j.ccell.2014.11.014.
2
mTOR signaling in melanoma: oncogene-induced pseudo-senescence?
Cancer Cell. 2015 Jan 12;27(1):3-5. doi: 10.1016/j.ccell.2014.12.005.
3
Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice.
Oncogene. 2009 Jun 11;28(23):2289-98. doi: 10.1038/onc.2009.95. Epub 2009 Apr 27.
4
Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis.
Genes Dev. 2012 May 15;26(10):1055-69. doi: 10.1101/gad.187252.112. Epub 2012 May 1.
5
CDKN2B Loss Promotes Progression from Benign Melanocytic Nevus to Melanoma.
Cancer Discov. 2015 Oct;5(10):1072-85. doi: 10.1158/2159-8290.CD-15-0196. Epub 2015 Jul 16.
7
Inactivation of the Hippo tumor suppressor pathway promotes melanoma.
Nat Commun. 2022 Jun 29;13(1):3732. doi: 10.1038/s41467-022-31399-w.
9
p15 Expression Differentiates Nevus from Melanoma.
Am J Pathol. 2016 Dec;186(12):3094-3099. doi: 10.1016/j.ajpath.2016.08.009. Epub 2016 Nov 14.
10
Decoding the Molecular Mechanisms of BRAF -Induced Nevi Formation.
Biomed Environ Sci. 2024 Jul 20;37(7):774-784. doi: 10.3967/bes2024.095.

引用本文的文献

1
Nanomedicine-Based Treatments for Rare and Aggressive Ocular Cancers: Advances in Drug Delivery.
Curr Treat Options Oncol. 2025 May 22. doi: 10.1007/s11864-025-01330-8.
3
MicroRNA-99 family in cancer: molecular mechanisms for clinical applications.
PeerJ. 2025 Mar 27;13:e19188. doi: 10.7717/peerj.19188. eCollection 2025.
4
Transcriptional reprogramming triggered by neonatal UV radiation or Lkb1 loss prevents BRAF-induced growth arrest in melanocytes.
Oncogene. 2025 Jun;44(21):1592-1608. doi: 10.1038/s41388-025-03339-7. Epub 2025 Mar 8.
7
The dual role of cellular senescence in human tumor progression and therapy.
MedComm (2020). 2024 Aug 19;5(9):e695. doi: 10.1002/mco2.695. eCollection 2024 Sep.
9
EGR3 Inhibits Tumor Progression by Inducing Schwann Cell-Like Differentiation.
Adv Sci (Weinh). 2024 Sep;11(34):e2400066. doi: 10.1002/advs.202400066. Epub 2024 Jul 7.
10
RICTOR/mTORC2 downregulation in BRAF melanoma cells promotes resistance to BRAF/MEK inhibition.
Mol Cancer. 2024 May 16;23(1):105. doi: 10.1186/s12943-024-02010-1.

本文引用的文献

1
ARF tumor suppression in the nucleolus.
Biochim Biophys Acta. 2014 Jun;1842(6):831-9. doi: 10.1016/j.bbadis.2014.01.016. Epub 2014 Feb 10.
2
Crosstalk between ERK, AKT, and cell survival.
Cancer Biol Ther. 2014 Mar 1;15(3):245-6. doi: 10.4161/cbt.27541. Epub 2014 Jan 14.
3
The molecular balancing act of p16(INK4a) in cancer and aging.
Mol Cancer Res. 2014 Feb;12(2):167-83. doi: 10.1158/1541-7786.MCR-13-0350. Epub 2013 Oct 17.
4
MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing.
PLoS One. 2013 May 28;8(5):e64434. doi: 10.1371/journal.pone.0064434. Print 2013.
5
The evolution of the TOR pathway and its role in cancer.
Oncogene. 2013 Aug 22;32(34):3923-32. doi: 10.1038/onc.2012.567. Epub 2012 Dec 17.
6
Cancer cell metabolism: one hallmark, many faces.
Cancer Discov. 2012 Oct;2(10):881-98. doi: 10.1158/2159-8290.CD-12-0345. Epub 2012 Sep 25.
7
miR-100 suppresses IGF2 and inhibits breast tumorigenesis by interfering with proliferation and survival signaling.
Oncogene. 2013 Jul 4;32(27):3306-10. doi: 10.1038/onc.2012.372. Epub 2012 Aug 27.
8
Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma.
Nat Genet. 2012 Sep;44(9):1006-14. doi: 10.1038/ng.2359. Epub 2012 Jul 29.
9
Oncogenic B-Raf signaling in melanoma cells controls a network of microRNAs with combinatorial functions.
Oncogene. 2013 Apr 11;32(15):1959-70. doi: 10.1038/onc.2012.209. Epub 2012 Jul 2.
10
LKB1/STK11 inactivation leads to expansion of a prometastatic tumor subpopulation in melanoma.
Cancer Cell. 2012 Jun 12;21(6):751-64. doi: 10.1016/j.ccr.2012.03.048.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验