Suppr超能文献

网格细胞的对称性由环境几何形状塑造。

Grid cell symmetry is shaped by environmental geometry.

出版信息

Nature. 2015 Feb 12;518(7538):232-235. doi: 10.1038/nature14153.

Abstract

Grid cells represent an animal's location by firing in multiple fields arranged in a striking hexagonal array. Such an impressive and constant regularity prompted suggestions that grid cells represent a universal and environmental-invariant metric for navigation. Originally the properties of grid patterns were believed to be independent of the shape of the environment and this notion has dominated almost all theoretical grid cell models. However, several studies indicate that environmental boundaries influence grid firing, though the strength, nature and longevity of this effect is unclear. Here we show that grid orientation, scale, symmetry and homogeneity are strongly and permanently affected by environmental geometry. We found that grid patterns orient to the walls of polarized enclosures such as squares, but not circles. Furthermore, the hexagonal grid symmetry is permanently broken in highly polarized environments such as trapezoids, the pattern being more elliptical and less homogeneous. Our results provide compelling evidence for the idea that environmental boundaries compete with the internal organization of the grid cell system to drive grid firing. Notably, grid cell activity is more local than previously thought and as a consequence cannot provide a universal spatial metric in all environments.

摘要

网格细胞通过在排列成惊人的六边形阵列的多个场中发射来表示动物的位置。这种令人印象深刻且恒定的规律性促使人们提出网格细胞代表导航的通用且与环境不变的度量标准的观点。最初,网格模式的特性被认为与环境的形状无关,这一概念几乎主导了所有的理论网格细胞模型。然而,几项研究表明,环境边界会影响网格的发射,尽管这种影响的强度、性质和持久性尚不清楚。在这里,我们表明网格的方向、比例、对称性和均匀性受到环境几何形状的强烈和永久影响。我们发现网格模式会朝向正方形等极化容器的壁定向,但不会朝向圆形定向。此外,在高度极化的环境(如梯形)中,六边形网格的对称性会永久破坏,模式更椭圆且均匀性更低。我们的结果为环境边界与网格细胞系统的内部组织竞争以驱动网格发射的观点提供了有力的证据。值得注意的是,网格细胞活动比以前认为的更局部,因此不能在所有环境中提供通用的空间度量标准。

相似文献

1
Grid cell symmetry is shaped by environmental geometry.
Nature. 2015 Feb 12;518(7538):232-235. doi: 10.1038/nature14153.
2
Shearing-induced asymmetry in entorhinal grid cells.
Nature. 2015 Feb 12;518(7538):207-12. doi: 10.1038/nature14151.
3
How environment geometry affects grid cell symmetry and what we can learn from it.
Philos Trans R Soc Lond B Biol Sci. 2013 Dec 23;369(1635):20130188. doi: 10.1098/rstb.2013.0188. Print 2014 Feb 5.
4
Grid-Cell Activity on Linear Tracks Indicates Purely Translational Remapping of 2D Firing Patterns at Movement Turning Points.
J Neurosci. 2018 Aug 1;38(31):7004-7011. doi: 10.1523/JNEUROSCI.0413-18.2018. Epub 2018 Jul 5.
5
Environmental boundaries as a mechanism for correcting and anchoring spatial maps.
J Physiol. 2016 Nov 15;594(22):6501-6511. doi: 10.1113/JP270624. Epub 2016 Jan 5.
7
A metric for space.
Hippocampus. 2008;18(12):1142-56. doi: 10.1002/hipo.20483.
8
Distorting the metric fabric of the cognitive map.
Trends Cogn Sci. 2015 Jun;19(6):300-1. doi: 10.1016/j.tics.2015.04.001. Epub 2015 Apr 13.
10
Modeling the grid cell activity on non-horizontal surfaces based on oscillatory interference modulated by gravity.
Neural Netw. 2021 Sep;141:199-210. doi: 10.1016/j.neunet.2021.04.009. Epub 2021 Apr 16.

引用本文的文献

1
Three types of remapping with linear decoders: a population-geometric perspective.
bioRxiv. 2025 Aug 11:2025.03.14.643251. doi: 10.1101/2025.03.14.643251.
3
Learning place cells and remapping by decoding the cognitive map.
Elife. 2025 Jul 28;13:RP99302. doi: 10.7554/eLife.99302.
4
Cortical dissociation of spatial reference frames during place navigation.
bioRxiv. 2025 Jun 29:2025.06.25.661569. doi: 10.1101/2025.06.25.661569.
5
REMI: Reconstructing Episodic Memory During Intrinsic Path Planning.
bioRxiv. 2025 Jul 3:2025.07.02.662824. doi: 10.1101/2025.07.02.662824.
6
Grid cell modules coordination improves accuracy and reliability for spatial navigation.
Cogn Neurodyn. 2025 Dec;19(1):76. doi: 10.1007/s11571-025-10263-9. Epub 2025 May 19.
8
Flexible hippocampal representation of abstract boundaries supports memory-guided choice.
Nat Commun. 2025 Mar 13;16(1):2377. doi: 10.1038/s41467-025-57644-6.
9
Tiling of large-scaled environments by grid cells requires experience.
bioRxiv. 2025 Feb 17:2025.02.16.638536. doi: 10.1101/2025.02.16.638536.

本文引用的文献

1
How environment geometry affects grid cell symmetry and what we can learn from it.
Philos Trans R Soc Lond B Biol Sci. 2013 Dec 23;369(1635):20130188. doi: 10.1098/rstb.2013.0188. Print 2014 Feb 5.
2
Memory, navigation and theta rhythm in the hippocampal-entorhinal system.
Nat Neurosci. 2013 Feb;16(2):130-8. doi: 10.1038/nn.3304. Epub 2013 Jan 28.
3
The entorhinal grid map is discretized.
Nature. 2012 Dec 6;492(7427):72-8. doi: 10.1038/nature11649.
4
Grid cell firing patterns signal environmental novelty by expansion.
Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17687-92. doi: 10.1073/pnas.1209918109. Epub 2012 Oct 8.
5
Neural representations of location composed of spatially periodic bands.
Science. 2012 Aug 17;337(6096):853-7. doi: 10.1126/science.1222403.
6
Fragmentation of grid cell maps in a multicompartment environment.
Nat Neurosci. 2009 Oct;12(10):1325-32. doi: 10.1038/nn.2396. Epub 2009 Sep 13.
7
Representation of geometric borders in the entorhinal cortex.
Science. 2008 Dec 19;322(5909):1865-8. doi: 10.1126/science.1166466.
9
Grid cells and theta as oscillatory interference: theory and predictions.
Hippocampus. 2008;18(12):1157-74. doi: 10.1002/hipo.20518.
10
The shape of human navigation: how environmental geometry is used in maintenance of spatial orientation.
Cognition. 2008 Nov;109(2):281-6. doi: 10.1016/j.cognition.2008.09.001. Epub 2008 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验