Bhirud Ashwini P, Sathaye Shivaram D, Waichal Rupali P, Ambekar Jalindar D, Park Chan-J, Kale Bharat B
Centre for Materials for Electronic Technology, Panchawati, Off Pashan Road, Pune 411008, India.
Nanoscale. 2015 Mar 21;7(11):5023-34. doi: 10.1039/c4nr06435f.
Highly monodispersed nitrogen doped TiO2 nanoparticles were successfully deposited on graphene (N-TiO2/Gr) by a facile in-situ wet chemical method for the first time. N-TiO2/Gr has been further used for photocatalytic hydrogen production using a naturally occurring abundant source of energy i.e. solar light. The N-TiO2/Gr nanocomposite composition was optimized by varying the concentrations of dopant nitrogen and graphene (using various concentrations of graphene) for utmost hydrogen production. The structural, optical and morphological aspects of nanocomposites were studied using XRD, UV-DRS, Raman, XPS, FESEM, and TEM. The structural study of the nanocomposite shows existence of anatase N-TiO2. Further, the details of the components present in the composition were confirmed with Raman and XPS. The morphological study shows that very tiny, 7-10 nm sized, N-TiO2 nanoparticles are deposited on the graphene sheet. The optical study reveals a drastic change in absorption edge and consequent total absorption due to nitrogen doping and presence of graphene. Considering the extended absorption edge to the visible region, these nanocomposites were further used as a photocatalyst to transform hazardous H2S waste into eco-friendly hydrogen using solar light. The N-TiO2/Gr nanocomposite with 2% graphene exhibits enhanced photocatalytic stable hydrogen production i.e. ∼5941 μmol h(-1) under solar light irradiation using just 0.2 gm nanocomposite, which is much higher as compared to P25, undoped TiO2 and TiO2/Gr nanocomposite. The enhancement in the photocatalytic activity is attributed to 'N' doping as well as high specific surface area and charge carrier ability of graphene. The recycling of the photocatalyst shows a good stability of the nanocomposites. This work may provide new insights to design other semiconductor deposited graphene novel nanocomposites as a visible light active photocatalyst.
首次通过一种简便的原位湿化学方法成功地将高度单分散的氮掺杂二氧化钛纳米颗粒沉积在石墨烯上(N-TiO2/Gr)。N-TiO2/Gr已进一步用于利用天然丰富的能源即太阳光进行光催化产氢。通过改变掺杂剂氮和石墨烯的浓度(使用不同浓度的石墨烯)来优化N-TiO2/Gr纳米复合材料的组成,以实现最大产氢量。使用XRD、UV-DRS、拉曼光谱、XPS、FESEM和TEM研究了纳米复合材料的结构、光学和形态方面。纳米复合材料的结构研究表明存在锐钛矿型N-TiO2。此外,通过拉曼光谱和XPS确认了组合物中存在的成分细节。形态学研究表明,非常微小的、尺寸为7-10nm的N-TiO2纳米颗粒沉积在石墨烯片上。光学研究表明,由于氮掺杂和石墨烯的存在,吸收边缘发生了剧烈变化,进而导致总吸收发生变化。考虑到吸收边缘扩展到可见光区域,这些纳米复合材料进一步用作光催化剂,利用太阳光将有害的H2S废物转化为环保型氢气。具有2%石墨烯的N-TiO2/Gr纳米复合材料在太阳光照射下使用仅0.2g纳米复合材料时表现出增强的光催化稳定产氢,即约5941μmol h(-1),这比P25、未掺杂的TiO2和TiO2/Gr纳米复合材料高得多。光催化活性的增强归因于“N”掺杂以及石墨烯的高比表面积和电荷载流子能力。光催化剂的循环使用显示出纳米复合材料具有良好的稳定性。这项工作可能为设计其他半导体沉积的石墨烯新型纳米复合材料作为可见光活性光催化剂提供新的见解。