School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do, 440-746, South Korea.
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Kyunggi-do, 440-746, South Korea.
Small. 2015 Jul 1;11(25):3054-65. doi: 10.1002/smll.201403625. Epub 2015 Feb 19.
Ultraviolet (UV) photodetectors based on ZnO nanostructure/graphene (Gr) hybrid-channel field-effect transistors (FETs) are investigated under illumination at various incident photon intensities and wavelengths. The time-dependent behaviors of hybrid-channel FETs reveal a high sensitivity and selectivity toward the near-UV region at the wavelength of 365 nm. The devices can operate at low voltage and show excellent selectivity, high responsivity (RI ), and high photoconductive gain (G). The change in the transfer characteristics of hybrid-channel FETs under UV light illumination allows to detect both photovoltage and photocurrent. The shift of the Dirac point (V Dirac ) observed during UV exposure leads to a clearer explanation of the response mechanism and carrier transport properties of Gr, and this phenomenon permits the calculation of electron concentration per UV power density transferred from ZnO nanorods and ZnO nanoparticles to Gr, which is 9 × 10(10) and 4 × 10(10) per mW, respectively. The maximum values of RI and G infer from the fitted curves of RI and G versus UV intensity are 3 × 10(5) A W(-1) and 10(6) , respectively. Therefore, the hybrid-channel FETs studied herein can be used as UV sensing devices with high performance and low power consumption, opening up new opportunities for future optoelectronic devices.
基于 ZnO 纳米结构/石墨烯(Gr)杂化通道场效应晶体管(FET)的紫外(UV)光探测器在不同入射光强度和波长的光照射下进行了研究。杂化通道 FET 的时间相关行为揭示了在 365nm 波长的近紫外区域具有高灵敏度和选择性。这些器件可以在低电压下工作,并表现出优异的选择性、高响应度(RI)和高光导增益(G)。在 UV 光照射下,杂化通道 FET 的传输特性的变化允许同时检测光电压和光电流。在 UV 暴露期间观察到的 Dirac 点(V Dirac)的偏移导致对 Gr 的响应机制和载流子输运特性的更清晰解释,并且这种现象允许计算从 ZnO 纳米棒和 ZnO 纳米颗粒转移到 Gr 的每单位 UV 功率密度的电子浓度,分别为 9×10(10)和 4×10(10)每 mW。从 RI 和 G 与 UV 强度的拟合曲线推断出 RI 和 G 的最大值分别为 3×10(5)A W(-1)和 10(6)。因此,本文研究的杂化通道 FET 可用作具有高性能和低功耗的 UV 感测器件,为未来的光电设备开辟了新的机会。