DiMaio Frank, Song Yifan, Li Xueming, Brunner Matthias J, Xu Chunfu, Conticello Vincent, Egelman Edward, Marlovits Thomas, Cheng Yifan, Baker David
Department of Biochemistry, University of Washington, Seattle, WA, USA.
Cyrus Biotechnology, Inc., Seattle, WA, USA.
Nat Methods. 2015 Apr;12(4):361-365. doi: 10.1038/nmeth.3286. Epub 2015 Feb 23.
We describe a general approach for refining protein structure models on the basis of cryo-electron microscopy maps with near-atomic resolution. The method integrates Monte Carlo sampling with local density-guided optimization, Rosetta all-atom refinement and real-space B-factor fitting. In tests on experimental maps of three different systems with 4.5-Å resolution or better, the method consistently produced models with atomic-level accuracy largely independently of starting-model quality, and it outperformed the molecular dynamics-based MDFF method. Cross-validated model quality statistics correlated with model accuracy over the three test systems.
我们描述了一种基于具有近原子分辨率的冷冻电子显微镜图谱来优化蛋白质结构模型的通用方法。该方法将蒙特卡罗采样与局部密度引导优化、Rosetta全原子优化和实空间B因子拟合相结合。在对三个分辨率为4.5埃或更高的不同系统的实验图谱进行测试时,该方法始终能产生具有原子水平准确性的模型,且在很大程度上与初始模型质量无关,并且其性能优于基于分子动力学的MDFF方法。在三个测试系统中,交叉验证的模型质量统计数据与模型准确性相关。