Suppr超能文献

产生神经介素S的神经元在视交叉上核中充当重要的起搏器,以耦合时钟神经元并决定昼夜节律。

Neuromedin s-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms.

作者信息

Lee Ivan T, Chang Alexander S, Manandhar Manabu, Shan Yongli, Fan Junmei, Izumo Mariko, Ikeda Yuichi, Motoike Toshiyuki, Dixon Shelley, Seinfeld Jeffrey E, Takahashi Joseph S, Yanagisawa Masashi

机构信息

Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.

Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.

出版信息

Neuron. 2015 Mar 4;85(5):1086-102. doi: 10.1016/j.neuron.2015.02.006.

Abstract

Circadian behavior in mammals is orchestrated by neurons within the suprachiasmatic nucleus (SCN), yet the neuronal population necessary for the generation of timekeeping remains unknown. We show that a subset of SCN neurons expressing the neuropeptide neuromedin S (NMS) plays an essential role in the generation of daily rhythms in behavior. We demonstrate that lengthening period within Nms neurons is sufficient to lengthen period of the SCN and behavioral circadian rhythms. Conversely, mice without a functional molecular clock within Nms neurons lack synchronous molecular oscillations and coherent behavioral daily rhythms. Interestingly, we found that mice lacking Nms and its closely related paralog, Nmu, do not lose in vivo circadian rhythms. However, blocking vesicular transmission from Nms neurons with intact cell-autonomous clocks disrupts the timing mechanisms of the SCN, revealing that Nms neurons define a subpopulation of pacemakers that control SCN network synchrony and in vivo circadian rhythms through intercellular synaptic transmission.

摘要

哺乳动物的昼夜节律行为由视交叉上核(SCN)内的神经元协调,但维持计时功能所必需的神经元群体仍不清楚。我们发现,表达神经肽神经介素S(NMS)的SCN神经元亚群在行为的日常节律产生中起着至关重要的作用。我们证明,延长Nms神经元的周期足以延长SCN和行为昼夜节律的周期。相反,Nms神经元内缺乏功能性分子时钟的小鼠缺乏同步的分子振荡和连贯的行为昼夜节律。有趣的是,我们发现缺乏Nms及其密切相关的旁系同源物Nmu的小鼠并没有丧失体内昼夜节律。然而,用完整的细胞自主时钟阻断来自Nms神经元的囊泡传递会破坏SCN的计时机制,这表明Nms神经元定义了一个起搏器亚群,它们通过细胞间突触传递来控制SCN网络同步和体内昼夜节律。

相似文献

2
Expression of the vesicular GABA transporter within neuromedin S neurons sustains behavioral circadian rhythms.
Proc Natl Acad Sci U S A. 2023 Dec 5;120(49):e2314857120. doi: 10.1073/pnas.2314857120. Epub 2023 Nov 29.
3
Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation.
eNeuro. 2017 Aug 18;4(4). doi: 10.1523/ENEURO.0160-17.2017. eCollection 2017 Jul-Aug.
4
Astrocytes Control Circadian Timekeeping in the Suprachiasmatic Nucleus via Glutamatergic Signaling.
Neuron. 2017 Mar 22;93(6):1420-1435.e5. doi: 10.1016/j.neuron.2017.02.030. Epub 2017 Mar 9.
5
Delayed Cryptochrome Degradation Asymmetrically Alters the Daily Rhythm in Suprachiasmatic Clock Neuron Excitability.
J Neurosci. 2017 Aug 16;37(33):7824-7836. doi: 10.1523/JNEUROSCI.0691-17.2017. Epub 2017 Jul 11.
6
Collective timekeeping among cells of the master circadian clock.
J Endocrinol. 2016 Jul;230(1):R27-49. doi: 10.1530/JOE-16-0054. Epub 2016 May 6.
7
Temporally chimeric mice reveal flexibility of circadian period-setting in the suprachiasmatic nucleus.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3657-62. doi: 10.1073/pnas.1511351113. Epub 2016 Mar 10.
8
Ontogeny of Circadian Rhythms and Synchrony in the Suprachiasmatic Nucleus.
J Neurosci. 2018 Feb 7;38(6):1326-1334. doi: 10.1523/JNEUROSCI.2006-17.2017. Epub 2017 Oct 20.
9
Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators.
Trends Neurosci. 2011 Jul;34(7):349-58. doi: 10.1016/j.tins.2011.05.003. Epub 2011 Jun 12.
10
In synch but not in step: Circadian clock circuits regulating plasticity in daily rhythms.
Neuroscience. 2016 Apr 21;320:259-80. doi: 10.1016/j.neuroscience.2016.01.072. Epub 2016 Feb 6.

引用本文的文献

1
3
A stress-sensing circuit signals to the central pacemaker to reprogram circadian rhythms.
Sci Adv. 2025 Jun 20;11(25):eadr7960. doi: 10.1126/sciadv.adr7960.
4
Role of circadian clock in female embryo implantation.
Front Cell Dev Biol. 2025 Jun 4;13:1607491. doi: 10.3389/fcell.2025.1607491. eCollection 2025.
6
Suprachiasmatic Neuromedin-S Neurons Regulate Arousal.
bioRxiv. 2025 Feb 22:2025.02.22.639648. doi: 10.1101/2025.02.22.639648.
8
I "Gut" Rhythm: the microbiota as a modulator of the stress response and circadian rhythms.
FEBS J. 2025 Mar;292(6):1454-1479. doi: 10.1111/febs.17400. Epub 2025 Jan 22.
10
GABAergic signalling in the suprachiasmatic nucleus is required for coherent circadian rhythmicity.
Eur J Neurosci. 2024 Dec;60(11):6652-6667. doi: 10.1111/ejn.16582. Epub 2024 Nov 18.

本文引用的文献

1
Dynamic interactions mediated by nonredundant signaling mechanisms couple circadian clock neurons.
Neuron. 2013 Nov 20;80(4):973-83. doi: 10.1016/j.neuron.2013.08.022.
2
The central circadian timing system.
Curr Opin Neurobiol. 2013 Oct;23(5):747-51. doi: 10.1016/j.conb.2013.04.004. Epub 2013 May 22.
3
A Gq-Ca2+ axis controls circuit-level encoding of circadian time in the suprachiasmatic nucleus.
Neuron. 2013 May 22;78(4):714-28. doi: 10.1016/j.neuron.2013.03.011. Epub 2013 Apr 25.
5
A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex.
Neuron. 2011 Sep 22;71(6):995-1013. doi: 10.1016/j.neuron.2011.07.026. Epub 2011 Sep 21.
6
Genetics of circadian rhythms in Mammalian model organisms.
Adv Genet. 2011;74:175-230. doi: 10.1016/B978-0-12-387690-4.00006-4.
7
Synaptotagmin10-Cre, a driver to disrupt clock genes in the SCN.
J Biol Rhythms. 2011 Oct;26(5):379-89. doi: 10.1177/0748730411415363.
8
A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits.
Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14306-11. doi: 10.1073/pnas.1101767108. Epub 2011 Jul 25.
9
Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators.
Trends Neurosci. 2011 Jul;34(7):349-58. doi: 10.1016/j.tins.2011.05.003. Epub 2011 Jun 12.
10
Remote control of neuronal signaling.
Pharmacol Rev. 2011 Jun;63(2):291-315. doi: 10.1124/pr.110.003020. Epub 2011 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验