Suppr超能文献

炔丙基自由基化学:金属配位引发的复兴。

Propargyl radical chemistry: renaissance instigated by metal coordination.

机构信息

Department of Chemistry and Biochemistry, California State University Northridge, Northridge, California 91330, United States.

出版信息

Acc Chem Res. 2015 Apr 21;48(4):1065-79. doi: 10.1021/ar500365v. Epub 2015 Mar 6.

Abstract

Over the last two decades, radical chemistry of propargyl systems was developed into a potent synthetic field providing access to classes of organic compounds that are otherwise hardly accessible. The levels of diastereoselection thus achieved (up to 100%) are unprecedented for free propargyl radicals, as well as for organic radicals π-bonded to transition metals. These advances were enabled by the coordination of the triple bond to a Co2(CO)6 core that precluded an acetylene-allene rearrangement, stabilized requisite propargyl cations, created conformational constraints at the carbon-carbon bond formation site, configurationally altered the acetylenic moiety allowing for 1,3-steric induction upon the newly formed stereocenters, increased bulkiness of propargyl triads thus controlling the spatial orientation of converging radicals, and allowed for α-to-γ projection of the reaction site and alteration of the transiency of radical intermediates. In the course of these studies, a number of popular "beliefs" were proven to be untrue. First, cobalt-complexed propargyl cations, which have long been considered to be thermally labile species, were engaged in synthetically meaningful transformation at temperatures as high as 147 °C. Second, in radical dimerization reactions, higher reaction temperatures did not adversely impact the yields and levels of d,l-diastereoselectivity. Third, π-bonded organometallic radicals, deemed unruly, were effectively controlled with complementary mechanistic tools, thus achieving the highest levels of stereoselectivity (up to 100%) in inter- and intramolecular reactions. Fourth, meso stereoisomers, being thermally labile and kinetically disfavored, were discovered to be major products in intramolecular cyclizations induced by cobaltocene. Fifth, propargyl cations were synthesized in the absence of strong acids, thus increasing the functional tolerance and achieving a long sought after compatibility with acid-sensitive functionalities. A concept of sequestered propargyl radicals was introduced to explain disparity in diastereoselectivity data: heterogeneous reducing agents allegedly produce "free" radicals, while homogeneous reductants generate "sequestered" radicals associated with reductant-derived oxidized species. Among mechanistic tools, a 1,3-steric induction was found to be most efficient for controlling the stereoselectivity of radical reactions (up to 100% d,l). In intramolecular reactions, a d,l-to-meso reversal of stereoselectivity was discovered with zinc being replaced with cobaltocene as a reductant. Among efficient tools for controlling the stereoselectivity in intramolecular cyclizations is a rigidity of the carbon tether that provides for an exclusive formation of d,l-diastereomers. Two novel reactions that belong to a new field of unorthodox organometallic radical chemistry were discovered: the spontaneous conversion of cobalt-complexed propargyl cations to radicals and the THF-mediated process wherein a THF molecule assumes a new role of an initiator in radical reactions. A multistep mechanism involves a THF-induced alteration of propargyl cations that facilitates a redox process between metal clusters. Novel stereoselective methods provide access to topologically and functionally diverse 3,4-diaryl and 3,4-dialkyl-1,5-alkadiynes, 3,4-disubstituted 1,5-cycloalkadiynes (C8-C12), 3,4-dialkoxy-1,5-(cyclo)alkadiynes, and 3,7-diene-1,9-alkadiynes, which can be used in targeted syntheses of organic assemblies of relevance to medicinal chemistry, materials science, and natural product syntheses. Novel mechanistic tools and methodologies for controlling stereoselectivity in radical reactions can be expanded toward new types of π-bonded unsaturated units (dienes, arenes, diynes, and enynes) and transition metals other than cobalt (Fe, Cr, Mo, W, and Mn).

摘要

在过去的二十年中,炔丙基体系的激进化学已发展成为一种强大的合成领域,为有机化合物提供了其他方法难以获得的途径。因此,实现的非对映选择性水平(高达 100%)对于自由炔丙基自由基以及与过渡金属π键合的有机自由基来说是前所未有的。这些进展得益于三键与 Co2(CO)6 核心的配位,这排除了乙炔-丙二烯重排,稳定了所需的炔丙基阳离子,在碳-碳键形成部位创建了构象约束,构象改变了炔基部分,允许在新形成的立体中心上进行 1,3-立体诱导,增加了炔丙基三联体的体积,从而控制了收敛自由基的空间取向,并允许反应部位的α-γ投影和自由基中间体的瞬态改变。在这些研究中,许多流行的“信念”被证明是不正确的。首先,长期以来被认为是热不稳定的钴配合物炔丙基阳离子,在高达 147°C 的温度下进行了有意义的合成转化。其次,在自由基二聚反应中,较高的反应温度不会对产率和 d,l-非对映选择性水平产生不利影响。第三,被认为难以控制的π键合有机金属自由基,通过互补的机械工具得到了有效控制,从而在分子间和分子内反应中实现了最高的立体选择性(高达 100%)。第四,中立体异构体,由于热不稳定和动力学不利,被发现是钴茂诱导的分子内环化反应的主要产物。第五,在不存在强酸的情况下合成了炔丙基阳离子,从而提高了功能耐受性,并实现了与酸敏感官能团长期以来的兼容性。引入了被隔离的炔丙基自由基的概念来解释非对映选择性数据的差异:据称,多相还原剂产生“自由”自由基,而均相还原剂则产生与还原剂衍生的氧化物种相关的“被隔离”自由基。在机械工具中,发现 1,3-立体诱导是控制自由基反应立体选择性(高达 100% d,l)最有效的方法。在分子内反应中,锌被钴茂取代作为还原剂时,发现 d,l-到中立体选择性的反转。控制分子内环化立体选择性的有效工具之一是碳键的刚性,它提供了 d,l-非对映异构体的独家形成。发现了两种属于非常规有机金属自由基化学新领域的新反应:钴配合物炔丙基阳离子自发转化为自由基和 THF 介导的过程,其中 THF 分子在自由基反应中扮演新的引发剂角色。多步机制涉及 THF 诱导的炔丙基阳离子的改变,这促进了金属簇之间的氧化还原过程。新的立体选择性方法可用于拓扑和功能多样的 3,4-二芳基和 3,4-二烷基-1,5-链烯二炔、3,4-取代的 1,5-环链烯二炔(C8-C12)、3,4-二烷氧基-1,5-(环)链烯二炔和 3,7-二烯-1,9-链烯二炔,这些方法可用于靶向合成与药物化学、材料科学和天然产物合成相关的有机组装体。控制自由基反应立体选择性的新机械工具和方法可以扩展到其他类型的π键合不饱和单元(二烯、芳基、二炔和烯炔)和除钴以外的其他过渡金属(Fe、Cr、Mo、W 和 Mn)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验