Suppr超能文献

体内线粒体呼吸链超复合物的形成及最佳细胞功能需要类stomatin蛋白2。

Stomatin-like protein 2 is required for in vivo mitochondrial respiratory chain supercomplex formation and optimal cell function.

作者信息

Mitsopoulos Panagiotis, Chang Yu-Han, Wai Timothy, König Tim, Dunn Stanley D, Langer Thomas, Madrenas Joaquín

机构信息

Microbiome and Disease Tolerance Centre, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.

Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Center for Molecular Medicine, University of Cologne, Cologne, Germany.

出版信息

Mol Cell Biol. 2015 May;35(10):1838-47. doi: 10.1128/MCB.00047-15. Epub 2015 Mar 16.

Abstract

Stomatin-like protein 2 (SLP-2) is a mainly mitochondrial protein that is widely expressed and is highly conserved across evolution. We have previously shown that SLP-2 binds the mitochondrial lipid cardiolipin and interacts with prohibitin-1 and -2 to form specialized membrane microdomains in the mitochondrial inner membrane, which are associated with optimal mitochondrial respiration. To determine how SLP-2 functions, we performed bioenergetic analysis of primary T cells from T cell-selective Slp-2 knockout mice under conditions that forced energy production to come almost exclusively from oxidative phosphorylation. These cells had a phenotype characterized by increased uncoupled mitochondrial respiration and decreased mitochondrial membrane potential. Since formation of mitochondrial respiratory chain supercomplexes (RCS) may correlate with more efficient electron transfer during oxidative phosphorylation, we hypothesized that the defect in mitochondrial respiration in SLP-2-deficient T cells was due to deficient RCS formation. We found that in the absence of SLP-2, T cells had decreased levels and activities of complex I-III2 and I-III2-IV(1-3) RCS but no defects in assembly of individual respiratory complexes. Impaired RCS formation in SLP-2-deficient T cells correlated with significantly delayed T cell proliferation in response to activation under conditions of limiting glycolysis. Altogether, our findings identify SLP-2 as a key regulator of the formation of RCS in vivo and show that these supercomplexes are required for optimal cell function.

摘要

类stomatin蛋白2(SLP - 2)是一种主要存在于线粒体的蛋白质,其表达广泛且在进化过程中高度保守。我们之前已经表明,SLP - 2与线粒体脂质心磷脂结合,并与抑制素 - 1和 - 2相互作用,在线粒体内膜形成特殊的膜微区,这些膜微区与最佳线粒体呼吸相关。为了确定SLP - 2的功能,我们在迫使能量产生几乎完全来自氧化磷酸化的条件下,对来自T细胞选择性Slp - 2基因敲除小鼠的原代T细胞进行了生物能量分析。这些细胞具有以线粒体解偶联呼吸增加和线粒体膜电位降低为特征的表型。由于线粒体呼吸链超复合物(RCS)的形成可能与氧化磷酸化过程中更有效的电子传递相关,我们推测SLP - 2缺陷型T细胞中线粒体呼吸缺陷是由于RCS形成不足所致。我们发现,在缺乏SLP - 2的情况下,T细胞中I - III2和I - III2 - IV(1 - 3) RCS的水平和活性降低,但单个呼吸复合物的组装没有缺陷。SLP - 2缺陷型T细胞中RCS形成受损与在糖酵解受限条件下激活后T细胞增殖显著延迟相关。总之,我们的研究结果确定SLP - 2是体内RCS形成的关键调节因子,并表明这些超复合物是最佳细胞功能所必需的。

相似文献

2
Stomatin-like protein 2 deficiency results in impaired mitochondrial translation.
PLoS One. 2017 Jun 27;12(6):e0179967. doi: 10.1371/journal.pone.0179967. eCollection 2017.
4
Stomatin-like protein 2 binds cardiolipin and regulates mitochondrial biogenesis and function.
Mol Cell Biol. 2011 Sep;31(18):3845-56. doi: 10.1128/MCB.05393-11. Epub 2011 Jul 11.
5
SLP-2 interacts with prohibitins in the mitochondrial inner membrane and contributes to their stability.
Biochim Biophys Acta. 2008 May;1783(5):904-11. doi: 10.1016/j.bbamcr.2008.02.006. Epub 2008 Feb 20.
8
The histidine triad nucleotide-binding protein 2 (HINT-2) positively regulates hepatocellular energy metabolism.
FASEB J. 2018 Sep;32(9):5143-5161. doi: 10.1096/fj.201701429R. Epub 2018 Apr 18.
9
Fine-Tuning of CD8(+) T Cell Mitochondrial Metabolism by the Respiratory Chain Repressor MCJ Dictates Protection to Influenza Virus.
Immunity. 2016 Jun 21;44(6):1299-311. doi: 10.1016/j.immuni.2016.02.018. Epub 2016 May 24.
10
An Arabidopsis stomatin-like protein affects mitochondrial respiratory supercomplex organization.
Plant Physiol. 2014 Mar;164(3):1389-400. doi: 10.1104/pp.113.230383. Epub 2014 Jan 14.

引用本文的文献

1
CLPB Deficiency, a Mitochondrial Chaperonopathy With Neutropenia and Neurological Presentation.
J Inherit Metab Dis. 2025 May;48(3):e70025. doi: 10.1002/jimd.70025.
3
OCIAD1 and prohibitins regulate the stability of the TIM23 protein translocase.
Cell Rep. 2024 Dec 24;43(12):115038. doi: 10.1016/j.celrep.2024.115038. Epub 2024 Dec 3.
4
NDUFS4 regulates cristae remodeling in diabetic kidney disease.
Nat Commun. 2024 Mar 4;15(1):1965. doi: 10.1038/s41467-024-46366-w.
6
CLPB disaggregase dysfunction impacts the functional integrity of the proteolytic SPY complex.
J Cell Biol. 2024 Mar 4;223(3). doi: 10.1083/jcb.202305087. Epub 2024 Jan 25.
8
Trophoblast Syncytialization: A Metabolic Crossroads.
Results Probl Cell Differ. 2024;71:101-125. doi: 10.1007/978-3-031-37936-9_6.
9
Propionic acid induces alterations in mitochondrial morphology and dynamics in SH-SY5Y cells.
Sci Rep. 2023 Aug 15;13(1):13248. doi: 10.1038/s41598-023-40130-8.
10
Triazine-Based Small Molecules: A Potential New Class of Compounds in the Antifungal Toolbox.
Pathogens. 2023 Jan 12;12(1):126. doi: 10.3390/pathogens12010126.

本文引用的文献

1
The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission.
J Cell Biol. 2014 Mar 17;204(6):919-29. doi: 10.1083/jcb.201308006. Epub 2014 Mar 10.
2
An Arabidopsis stomatin-like protein affects mitochondrial respiratory supercomplex organization.
Plant Physiol. 2014 Mar;164(3):1389-400. doi: 10.1104/pp.113.230383. Epub 2014 Jan 14.
3
The function of the respiratory supercomplexes: the plasticity model.
Biochim Biophys Acta. 2014 Apr;1837(4):444-50. doi: 10.1016/j.bbabio.2013.12.009. Epub 2013 Dec 22.
4
Genetic variability of respiratory complex abundance, organization and activity in mouse brain.
Genes Brain Behav. 2014 Feb;13(2):135-43. doi: 10.1111/gbb.12101. Epub 2013 Nov 15.
5
Identification of multimolecular complexes and supercomplexes in compartment-selective membrane microdomains.
Methods Cell Biol. 2013;117:411-31. doi: 10.1016/B978-0-12-408143-7.00022-0.
6
8
Respiratory supercomplexes: structure, function and assembly.
Protein Cell. 2013 Aug;4(8):582-90. doi: 10.1007/s13238-013-3032-y. Epub 2013 Jul 5.
9
Supercomplex assembly determines electron flux in the mitochondrial electron transport chain.
Science. 2013 Jun 28;340(6140):1567-70. doi: 10.1126/science.1230381.
10
Posttranscriptional control of T cell effector function by aerobic glycolysis.
Cell. 2013 Jun 6;153(6):1239-51. doi: 10.1016/j.cell.2013.05.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验