Suppr超能文献

光调节哺乳动物光感受器的睫状蛋白运输和外段盘膜更新。

Light regulates the ciliary protein transport and outer segment disc renewal of mammalian photoreceptors.

作者信息

Hsu Ya-Chu, Chuang Jen-Zen, Sung Ching-Hwa

机构信息

Dyson Vision Research Institute, Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY 10065, USA.

Dyson Vision Research Institute, Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY 10065, USA; Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA.

出版信息

Dev Cell. 2015 Mar 23;32(6):731-42. doi: 10.1016/j.devcel.2015.01.027.

Abstract

The outer segment (OS) of the rod photoreceptor is a light-sensing cilium containing ~1,000 membrane-bound discs. Each day, discs constituting the distal tenth of the OS are shed, whereas nascent discs are formed at the base of the OS through the incorporation of molecules transported from the inner segment. The mechanisms regulating these processes remain elusive. Here, we show that rhodopsin preferentially enters the OS in the dark. Photoexcitation of post-Golgi rhodopsins retains them in the inner segment. Disc-rim protein peripherin2/rds enters the OS following a rhythm complementary to that of rhodopsin. Light-dark cycle-regulated protein trafficking serves as a mechanism to segregate rhodopsin-rich and peripherin2/rds-rich discs into alternating stacks, which are flanked by characteristic cytoplasmic pockets. This periodic cytostructure divides the OS into approximately ten fractions, each containing discs synthesized in a single day. This mechanism may explain how the rod photoreceptor balances the quantity of discs added and removed daily.

摘要

视杆光感受器的外段(OS)是一种光感应纤毛,含有约1000个膜结合圆盘。每天,构成OS远端十分之一的圆盘会脱落,而新生圆盘则通过从内段运输来的分子整合在OS基部形成。调节这些过程的机制仍然不清楚。在这里,我们表明视紫红质在黑暗中优先进入OS。高尔基体后视紫红质的光激发将它们保留在内段。圆盘边缘蛋白外周蛋白2/rds以与视紫红质互补的节律进入OS。明暗周期调节的蛋白质运输作为一种机制,将富含视紫红质和富含外周蛋白2/rds的圆盘分隔成交替的堆叠,其两侧是特征性的细胞质袋。这种周期性的细胞结构将OS分成大约十个部分,每个部分包含在一天内合成的圆盘。这种机制可能解释了视杆光感受器如何平衡每天添加和去除的圆盘数量。

相似文献

1
Light regulates the ciliary protein transport and outer segment disc renewal of mammalian photoreceptors.
Dev Cell. 2015 Mar 23;32(6):731-42. doi: 10.1016/j.devcel.2015.01.027.
2
Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells.
Cell Motil Cytoskeleton. 2000 Jun;46(2):95-107. doi: 10.1002/1097-0169(200006)46:2<95::AID-CM2>3.0.CO;2-Q.
3
Rod disc renewal occurs by evagination of the ciliary plasma membrane that makes cadherin-based contacts with the inner segment.
Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):15922-7. doi: 10.1073/pnas.1509285113. Epub 2015 Dec 14.
4
Initiation of rod outer segment disc formation requires RDS.
PLoS One. 2014 Jun 4;9(6):e98939. doi: 10.1371/journal.pone.0098939. eCollection 2014.
5
Rhodopsin Trafficking and Mistrafficking: Signals, Molecular Components, and Mechanisms.
Prog Mol Biol Transl Sci. 2015;132:39-71. doi: 10.1016/bs.pmbts.2015.02.007. Epub 2015 Mar 25.
6
Light regulation of rhodopsin distribution during outer segment renewal in murine rod photoreceptors.
Curr Biol. 2024 Apr 8;34(7):1492-1505.e6. doi: 10.1016/j.cub.2024.02.070. Epub 2024 Mar 19.
7
Photoreceptor Disc Enclosure Is Tightly Controlled by Peripherin-2 Oligomerization.
J Neurosci. 2021 Apr 21;41(16):3588-3596. doi: 10.1523/JNEUROSCI.0041-21.2021. Epub 2021 Mar 11.
9
Numb regulates the polarized delivery of cyclic nucleotide-gated ion channels in rod photoreceptor cilia.
J Neurosci. 2014 Oct 15;34(42):13976-87. doi: 10.1523/JNEUROSCI.1938-14.2014.
10
Post-Golgi trafficking of rhodopsin in retinal photoreceptors.
Eye (Lond). 1998;12 ( Pt 3b):526-30. doi: 10.1038/eye.1998.141.

引用本文的文献

3
P23H rhodopsin aggregation in the ER causes synaptic protein imbalance in rod photoreceptors.
bioRxiv. 2024 Dec 16:2024.10.18.619115. doi: 10.1101/2024.10.18.619115.
4
The Formation and Renewal of Photoreceptor Outer Segments.
Cells. 2024 Aug 15;13(16):1357. doi: 10.3390/cells13161357.
6
Automated quantification of photoreceptor outer segments in developing and degenerating retinas on microscopy images across scales.
Front Mol Neurosci. 2024 May 24;17:1398447. doi: 10.3389/fnmol.2024.1398447. eCollection 2024.
7
Light regulation of rhodopsin distribution during outer segment renewal in murine rod photoreceptors.
Curr Biol. 2024 Apr 8;34(7):1492-1505.e6. doi: 10.1016/j.cub.2024.02.070. Epub 2024 Mar 19.
8
Recent advances in the understanding of cilia mechanisms and their applications as therapeutic targets.
Front Mol Biosci. 2023 Sep 14;10:1232188. doi: 10.3389/fmolb.2023.1232188. eCollection 2023.
10
Dysregulated Arginine Metabolism Is Linked to Retinal Degeneration in Cep250 Knockout Mice.
Invest Ophthalmol Vis Sci. 2023 Sep 1;64(12):2. doi: 10.1167/iovs.64.12.2.

本文引用的文献

1
Four-dimensional live imaging of apical biosynthetic trafficking reveals a post-Golgi sorting role of apical endosomal intermediates.
Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4127-32. doi: 10.1073/pnas.1304168111. Epub 2014 Mar 3.
2
Regulation of rhodopsin-eGFP distribution in transgenic xenopus rod outer segments by light.
PLoS One. 2013 Nov 15;8(11):e80059. doi: 10.1371/journal.pone.0080059. eCollection 2013.
3
Visual arrestin interaction with clathrin adaptor AP-2 regulates photoreceptor survival in the vertebrate retina.
Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9463-8. doi: 10.1073/pnas.1301126110. Epub 2013 May 20.
4
Restoration of vision after transplantation of photoreceptors.
Nature. 2012 May 3;485(7396):99-103. doi: 10.1038/nature10997.
5
The functional cycle of visual arrestins in photoreceptor cells.
Prog Retin Eye Res. 2011 Nov;30(6):405-30. doi: 10.1016/j.preteyeres.2011.07.002. Epub 2011 Jul 29.
6
The cell biology of vision.
J Cell Biol. 2010 Sep 20;190(6):953-63. doi: 10.1083/jcb.201006020.
7
Apical trafficking in epithelial cells: signals, clusters and motors.
J Cell Sci. 2009 Dec 1;122(Pt 23):4253-66. doi: 10.1242/jcs.032615.
8
Overexpression of rhodopsin alters the structure and photoresponse of rod photoreceptors.
Biophys J. 2009 Feb;96(3):939-50. doi: 10.1016/j.bpj.2008.10.016.
9
Intraflagellar transport and the sensory outer segment of vertebrate photoreceptors.
Dev Dyn. 2008 Aug;237(8):1982-92. doi: 10.1002/dvdy.21554.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验