Kelly Brendan J, Gross Robert, Bittinger Kyle, Sherrill-Mix Scott, Lewis James D, Collman Ronald G, Bushman Frederic D, Li Hongzhe
Department of Medicine.
Department of Microbiology and.
Bioinformatics. 2015 Aug 1;31(15):2461-8. doi: 10.1093/bioinformatics/btv183. Epub 2015 Mar 29.
The variation in community composition between microbiome samples, termed beta diversity, can be measured by pairwise distance based on either presence-absence or quantitative species abundance data. PERMANOVA, a permutation-based extension of multivariate analysis of variance to a matrix of pairwise distances, partitions within-group and between-group distances to permit assessment of the effect of an exposure or intervention (grouping factor) upon the sampled microbiome. Within-group distance and exposure/intervention effect size must be accurately modeled to estimate statistical power for a microbiome study that will be analyzed with pairwise distances and PERMANOVA.
We present a framework for PERMANOVA power estimation tailored to marker-gene microbiome studies that will be analyzed by pairwise distances, which includes: (i) a novel method for distance matrix simulation that permits modeling of within-group pairwise distances according to pre-specified population parameters; (ii) a method to incorporate effects of different sizes within the simulated distance matrix; (iii) a simulation-based method for estimating PERMANOVA power from simulated distance matrices; and (iv) an R statistical software package that implements the above. Matrices of pairwise distances can be efficiently simulated to satisfy the triangle inequality and incorporate group-level effects, which are quantified by the adjusted coefficient of determination, omega-squared (ω2). From simulated distance matrices, available PERMANOVA power or necessary sample size can be estimated for a planned microbiome study.
微生物组样本之间群落组成的差异,即所谓的β多样性,可以基于存在与否或定量物种丰度数据通过成对距离来衡量。PERMANOVA是将多变量方差分析基于排列扩展到成对距离矩阵,它划分组内和组间距离,以评估暴露或干预(分组因素)对采样微生物组的影响。为了估计将通过成对距离和PERMANOVA进行分析的微生物组研究的统计功效,必须准确模拟组内距离和暴露/干预效应大小。
我们提出了一个针对将通过成对距离进行分析的标记基因微生物组研究的PERMANOVA功效估计框架,该框架包括:(i)一种用于距离矩阵模拟的新方法,该方法允许根据预先指定总体参数对组内成对距离进行建模;(ii)一种在模拟距离矩阵中纳入不同大小效应的方法;(iii)一种基于模拟从模拟距离矩阵估计PERMANOVA功效的方法;以及(iv)一个实现上述内容的R统计软件包。可以有效地模拟成对距离矩阵以满足三角不等式并纳入组水平效应,这些效应通过调整后的决定系数ω²进行量化。根据模拟距离矩阵,可以为计划中的微生物组研究估计可用的PERMANOVA功效或所需的样本量。