Suppr超能文献

使用成对距离和PERMANOVA进行微生物组研究的功效和样本量估计。

Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA.

作者信息

Kelly Brendan J, Gross Robert, Bittinger Kyle, Sherrill-Mix Scott, Lewis James D, Collman Ronald G, Bushman Frederic D, Li Hongzhe

机构信息

Department of Medicine.

Department of Microbiology and.

出版信息

Bioinformatics. 2015 Aug 1;31(15):2461-8. doi: 10.1093/bioinformatics/btv183. Epub 2015 Mar 29.

Abstract

MOTIVATION

The variation in community composition between microbiome samples, termed beta diversity, can be measured by pairwise distance based on either presence-absence or quantitative species abundance data. PERMANOVA, a permutation-based extension of multivariate analysis of variance to a matrix of pairwise distances, partitions within-group and between-group distances to permit assessment of the effect of an exposure or intervention (grouping factor) upon the sampled microbiome. Within-group distance and exposure/intervention effect size must be accurately modeled to estimate statistical power for a microbiome study that will be analyzed with pairwise distances and PERMANOVA.

RESULTS

We present a framework for PERMANOVA power estimation tailored to marker-gene microbiome studies that will be analyzed by pairwise distances, which includes: (i) a novel method for distance matrix simulation that permits modeling of within-group pairwise distances according to pre-specified population parameters; (ii) a method to incorporate effects of different sizes within the simulated distance matrix; (iii) a simulation-based method for estimating PERMANOVA power from simulated distance matrices; and (iv) an R statistical software package that implements the above. Matrices of pairwise distances can be efficiently simulated to satisfy the triangle inequality and incorporate group-level effects, which are quantified by the adjusted coefficient of determination, omega-squared (ω2). From simulated distance matrices, available PERMANOVA power or necessary sample size can be estimated for a planned microbiome study.

摘要

动机

微生物组样本之间群落组成的差异,即所谓的β多样性,可以基于存在与否或定量物种丰度数据通过成对距离来衡量。PERMANOVA是将多变量方差分析基于排列扩展到成对距离矩阵,它划分组内和组间距离,以评估暴露或干预(分组因素)对采样微生物组的影响。为了估计将通过成对距离和PERMANOVA进行分析的微生物组研究的统计功效,必须准确模拟组内距离和暴露/干预效应大小。

结果

我们提出了一个针对将通过成对距离进行分析的标记基因微生物组研究的PERMANOVA功效估计框架,该框架包括:(i)一种用于距离矩阵模拟的新方法,该方法允许根据预先指定总体参数对组内成对距离进行建模;(ii)一种在模拟距离矩阵中纳入不同大小效应的方法;(iii)一种基于模拟从模拟距离矩阵估计PERMANOVA功效的方法;以及(iv)一个实现上述内容的R统计软件包。可以有效地模拟成对距离矩阵以满足三角不等式并纳入组水平效应,这些效应通过调整后的决定系数ω²进行量化。根据模拟距离矩阵,可以为计划中的微生物组研究估计可用的PERMANOVA功效或所需的样本量。

相似文献

1
Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA.
Bioinformatics. 2015 Aug 1;31(15):2461-8. doi: 10.1093/bioinformatics/btv183. Epub 2015 Mar 29.
2
PERMANOVA-S: association test for microbial community composition that accommodates confounders and multiple distances.
Bioinformatics. 2016 Sep 1;32(17):2618-25. doi: 10.1093/bioinformatics/btw311. Epub 2016 May 19.
3
Multivariate Welch t-test on distances.
Bioinformatics. 2016 Dec 1;32(23):3552-3558. doi: 10.1093/bioinformatics/btw524. Epub 2016 Aug 11.
4
Extension of PERMANOVA to Testing the Mediation Effect of the Microbiome.
Genes (Basel). 2022 May 25;13(6):940. doi: 10.3390/genes13060940.
5
D-MANOVA: fast distance-based multivariate analysis of variance for large-scale microbiome association studies.
Bioinformatics. 2021 Dec 22;38(1):286-288. doi: 10.1093/bioinformatics/btab498.
6
A rarefaction-without-resampling extension of PERMANOVA for testing presence-absence associations in the microbiome.
Bioinformatics. 2022 Aug 2;38(15):3689-3697. doi: 10.1093/bioinformatics/btac399.
8
Testing in Microbiome-Profiling Studies with MiRKAT, the Microbiome Regression-Based Kernel Association Test.
Am J Hum Genet. 2015 May 7;96(5):797-807. doi: 10.1016/j.ajhg.2015.04.003.
9
Beta-diversity distance matrices for microbiome sample size and power calculations - How to obtain good estimates.
Comput Struct Biotechnol J. 2022 Apr 27;20:2259-2267. doi: 10.1016/j.csbj.2022.04.032. eCollection 2022.
10
Power of Microbiome Beta-Diversity Analyses Based on Standard Reference Samples.
Am J Epidemiol. 2021 Feb 1;190(3):439-447. doi: 10.1093/aje/kwaa204.

引用本文的文献

1
The Effects of Prebiotic Dietary Fibers, Probiotics, and Synbiotics on Gut Permeability and Immunity: A Systematic Review.
Iran J Med Sci. 2025 Aug 1;50(8):500-529. doi: 10.30476/ijms.2024.102363.3525. eCollection 2025 Aug.
4
How thoughtful experimental design can empower biologists in the omics era.
Nat Commun. 2025 Aug 6;16(1):7263. doi: 10.1038/s41467-025-62616-x.
6
Association between Serum Uric Acid Levels and Salivary Microbiota in Patients with Obstructive Sleep Apnea.
J Microbiol Biotechnol. 2025 Jun 23;35:e2503042. doi: 10.4014/jmb.2503.03042.
8
Comparative effects of vegetarian diet and rendered animal by-product on the chicken gut health.
Poult Sci. 2025 May 29;104(9):105360. doi: 10.1016/j.psj.2025.105360.
9
Impact of peripheral circadian misalignment and alcohol on the resiliency of intestinal barrier and microbiota.
Gut Microbes. 2025 Dec;17(1):2509281. doi: 10.1080/19490976.2025.2509281. Epub 2025 Jun 4.

本文引用的文献

1
Dynamics and associations of microbial community types across the human body.
Nature. 2014 May 15;509(7500):357-60. doi: 10.1038/nature13178. Epub 2014 Apr 16.
2
phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data.
PLoS One. 2013 Apr 22;8(4):e61217. doi: 10.1371/journal.pone.0061217. Print 2013.
3
Hypothesis testing and power calculations for taxonomic-based human microbiome data.
PLoS One. 2012;7(12):e52078. doi: 10.1371/journal.pone.0052078. Epub 2012 Dec 20.
4
Succession in the gut microbiome following antibiotic and antibody therapies for Clostridium difficile.
PLoS One. 2012;7(10):e46966. doi: 10.1371/journal.pone.0046966. Epub 2012 Oct 10.
5
Lung-enriched organisms and aberrant bacterial and fungal respiratory microbiota after lung transplant.
Am J Respir Crit Care Med. 2012 Sep 15;186(6):536-45. doi: 10.1164/rccm.201204-0693OC. Epub 2012 Jul 12.
6
A framework for human microbiome research.
Nature. 2012 Jun 13;486(7402):215-21. doi: 10.1038/nature11209.
7
Structure, function and diversity of the healthy human microbiome.
Nature. 2012 Jun 13;486(7402):207-14. doi: 10.1038/nature11234.
8
Linking long-term dietary patterns with gut microbial enterotypes.
Science. 2011 Oct 7;334(6052):105-8. doi: 10.1126/science.1208344. Epub 2011 Sep 1.
9
Disordered microbial communities in the upper respiratory tract of cigarette smokers.
PLoS One. 2010 Dec 20;5(12):e15216. doi: 10.1371/journal.pone.0015216.
10
UniFrac: an effective distance metric for microbial community comparison.
ISME J. 2011 Feb;5(2):169-72. doi: 10.1038/ismej.2010.133. Epub 2010 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验