Durmuş Saliha, Çakır Tunahan, Özgür Arzucan, Guthke Reinhard
Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Kocaeli Turkey.
Department of Computer Engineering, Boǧaziçi University, Istanbul Turkey.
Front Microbiol. 2015 Apr 9;6:235. doi: 10.3389/fmicb.2015.00235. eCollection 2015.
Pathogens manipulate the cellular mechanisms of host organisms via pathogen-host interactions (PHIs) in order to take advantage of the capabilities of host cells, leading to infections. The crucial role of these interspecies molecular interactions in initiating and sustaining infections necessitates a thorough understanding of the corresponding mechanisms. Unlike the traditional approach of considering the host or pathogen separately, a systems-level approach, considering the PHI system as a whole is indispensable to elucidate the mechanisms of infection. Following the technological advances in the post-genomic era, PHI data have been produced in large-scale within the last decade. Systems biology-based methods for the inference and analysis of PHI regulatory, metabolic, and protein-protein networks to shed light on infection mechanisms are gaining increasing demand thanks to the availability of omics data. The knowledge derived from the PHIs may largely contribute to the identification of new and more efficient therapeutics to prevent or cure infections. There are recent efforts for the detailed documentation of these experimentally verified PHI data through Web-based databases. Despite these advances in data archiving, there are still large amounts of PHI data in the biomedical literature yet to be discovered, and novel text mining methods are in development to unearth such hidden data. Here, we review a collection of recent studies on computational systems biology of PHIs with a special focus on the methods for the inference and analysis of PHI networks, covering also the Web-based databases and text-mining efforts to unravel the data hidden in the literature.
病原体通过病原体-宿主相互作用(PHIs)操纵宿主生物体的细胞机制,以利用宿主细胞的能力,从而导致感染。这些种间分子相互作用在引发和维持感染中起着关键作用,因此有必要深入了解相应的机制。与传统的分别考虑宿主或病原体的方法不同,将PHI系统作为一个整体来考虑的系统层面方法对于阐明感染机制是不可或缺的。随着后基因组时代技术的进步,在过去十年中已大规模产生了PHI数据。由于组学数据的可用性,基于系统生物学的用于推断和分析PHI调控、代谢和蛋白质-蛋白质网络以揭示感染机制的方法的需求日益增加。从PHIs中获得的知识可能在很大程度上有助于识别预防或治疗感染的新的和更有效的疗法。最近有人致力于通过基于网络的数据库详细记录这些经过实验验证的PHI数据。尽管在数据存档方面取得了这些进展,但生物医学文献中仍有大量PHI数据有待发现,并且正在开发新的文本挖掘方法来挖掘此类隐藏数据。在这里,我们综述了一系列关于PHIs计算系统生物学的最新研究,特别关注PHI网络的推断和分析方法,还涵盖了基于网络的数据库以及为揭示文献中隐藏数据而进行的文本挖掘工作。