Suppr超能文献

使用动力踝关节假肢的可变步频行走和地面自适应站立

Variable Cadence Walking and Ground Adaptive Standing With a Powered Ankle Prosthesis.

作者信息

Shultz Amanda H, Lawson Brian E, Goldfarb Michael

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2016 Apr;24(4):495-505. doi: 10.1109/TNSRE.2015.2428196. Epub 2015 Apr 30.

Abstract

This paper describes a control approach that provides walking and standing functionality for a powered ankle prosthesis, and demonstrates the efficacy of the approach in experiments with a unilateral transtibial amputee subject. Both controllers incorporate a finite-state structure that emulates healthy ankle joint behavior via a series of piecewise passive impedance functions. The walking controller additionally modifies impedance parameters based on estimated cadence, while the standing controller modulates the ankle equilibrium angle in order to adapt to the ground slope and user posture, and the supervisory controller selects between the walking and standing controllers. The system is shown to reproduce several essential biomechanical features of the healthy joint during walking, particularly relative to a passive prosthesis, and is shown to adapt to various cadences. The system is also shown to adapt to slopes over a range of ±15°, providing support to the user, as validated by quasi-static stiffness measurements recorded by the prosthesis. The subject is shown to place more weight on the powered prosthesis than on his passive prosthesis when standing on sloped surfaces, particularly at angles of 10° or greater. The authors also demonstrated that the prosthesis typically began providing support within 1 s of initial ground contact. Further, the supervisory controller was shown to effectively switch between walking and standing, as well as determine ground slope just prior to the transition from the standing controller to the walking controller, where the estimated ground slope was accurate to within 1.25° for all trials.

摘要

本文描述了一种为电动踝关节假肢提供行走和站立功能的控制方法,并在对一名单侧胫骨截肢受试者的实验中证明了该方法的有效性。两种控制器都采用了有限状态结构,通过一系列分段无源阻抗函数来模拟健康踝关节的行为。行走控制器还根据估计的步频修改阻抗参数,而站立控制器则调节踝关节平衡角度以适应地面坡度和用户姿势,监督控制器在行走和站立控制器之间进行选择。该系统在行走过程中能够重现健康关节的几个基本生物力学特征,特别是相对于被动假肢而言,并且能够适应各种步频。该系统还被证明能够适应±15°范围内的坡度,为用户提供支撑,这一点通过假肢记录的准静态刚度测量得到了验证。当受试者站在倾斜表面上时,尤其是在10°或更大角度时,其在电动假肢上施加的重量比在被动假肢上更多。作者还证明,假肢通常在首次接触地面后1秒内开始提供支撑。此外,监督控制器被证明能够在行走和站立之间有效切换,并且能够在从站立控制器过渡到行走控制器之前确定地面坡度,在所有试验中,估计的地面坡度精确到1.25°以内。

相似文献

1
Variable Cadence Walking and Ground Adaptive Standing With a Powered Ankle Prosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2016 Apr;24(4):495-505. doi: 10.1109/TNSRE.2015.2428196. Epub 2015 Apr 30.
2
Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
Neural Netw. 2008 May;21(4):654-66. doi: 10.1016/j.neunet.2008.03.006. Epub 2008 Apr 26.
3
A preliminary investigation of powered prostheses for improved walking biomechanics in bilateral transfemoral amputees.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4164-7. doi: 10.1109/EMBC.2012.6346884.
4
A Semi-Powered Ankle Prosthesis and Unified Controller for Level and Sloped Walking.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:320-329. doi: 10.1109/TNSRE.2021.3049194. Epub 2021 Mar 2.
5
Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.
IEEE Trans Neural Syst Rehabil Eng. 2016 May;24(5):573-81. doi: 10.1109/TNSRE.2015.2441061. Epub 2015 Jun 4.
6
Upslope walking with a powered knee and ankle prosthesis: initial results with an amputee subject.
IEEE Trans Neural Syst Rehabil Eng. 2011 Feb;19(1):71-8. doi: 10.1109/TNSRE.2010.2087360. Epub 2010 Oct 14.
7
Standing stability enhancement with an intelligent powered transfemoral prosthesis.
IEEE Trans Biomed Eng. 2011 Sep;58(9):2617-24. doi: 10.1109/TBME.2011.2160173. Epub 2011 Jun 20.
8
Ground adaptive standing controller for a powered transfemoral prosthesis.
IEEE Int Conf Rehabil Robot. 2011;2011:5975475. doi: 10.1109/ICORR.2011.5975475.
9
A Stair Ascent and Descent Controller for a Powered Ankle Prosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2018 May;26(5):993-1002. doi: 10.1109/TNSRE.2018.2819508.
10
A running controller for a powered transfemoral prosthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4168-71. doi: 10.1109/EMBC.2012.6346885.

引用本文的文献

1
Towards a Unified Approach for Continuously-Variable Impedance Control of Powered Prosthetic Legs over Walking Speeds and Inclines.
IEEE Int Conf Robot Autom. 2024 May;2024:944-950. doi: 10.1109/icra57147.2024.10610071. Epub 2024 Aug 8.
2
Continuous neural control of a bionic limb restores biomimetic gait after amputation.
Nat Med. 2024 Jul;30(7):2010-2019. doi: 10.1038/s41591-024-02994-9. Epub 2024 Jul 1.
3
Powered Knee and Ankle Prosthesis Control for Adaptive Ambulation at Variable Speeds, Inclines, and Uneven Terrains.
Rep U S. 2023 Oct;2023:2128-2133. doi: 10.1109/iros55552.2023.10342504. Epub 2023 Dec 13.
4
A Scientometric Analysis and Visualization of Prosthetic Foot Research Work: 2000 to 2022.
Bioengineering (Basel). 2023 Sep 28;10(10):1138. doi: 10.3390/bioengineering10101138.
5
Data-Driven Variable Impedance Control of a Powered Knee-Ankle Prosthesis for Adaptive Speed and Incline Walking.
IEEE Trans Robot. 2023 Jun;39(3):2151-2169. doi: 10.1109/tro.2022.3226887. Epub 2023 Jan 13.
6
Gait Alteration in Individual with Limb Loss: The Role of Inertial Sensors.
Sensors (Basel). 2023 Feb 7;23(4):1880. doi: 10.3390/s23041880.
7
A Compact, Lightweight Robotic Ankle-Foot Prosthesis: Featuring a Powered Polycentric Design.
IEEE Robot Autom Mag. 2020 Mar;27(1):87-102. doi: 10.1109/mra.2019.2955740. Epub 2020 Jan 20.
8
Design and Validation of a Powered Knee-Ankle Prosthesis with High-Torque, Low-Impedance Actuators.
IEEE Trans Robot. 2020 Dec;36(6):1649-1668. doi: 10.1109/TRO.2020.3005533. Epub 2020 Jul 13.
9
On-board Training Strategy for IMU-Based Real-Time Locomotion Recognition of Transtibial Amputees With Robotic Prostheses.
Front Neurorobot. 2020 Oct 22;14:47. doi: 10.3389/fnbot.2020.00047. eCollection 2020.
10
Accuracy and repeatability of smartphone sensors for measuring shank-to-vertical angle.
Prosthet Orthot Int. 2020 Jun;44(3):172-179. doi: 10.1177/0309364620911314. Epub 2020 Apr 21.

本文引用的文献

1
Amputee Subject Testing Protocol, Results, and Analysis of a Powered Transtibial Prosthetic Device.
J Med Device. 2014 Dec;8(4):0410071-410076. doi: 10.1115/1.4027497. Epub 2014 Aug 19.
2
Design and Validation of the Ankle Mimicking Prosthetic (AMP-) Foot 2.0.
IEEE Trans Neural Syst Rehabil Eng. 2014 Jan;22(1):138-48. doi: 10.1109/TNSRE.2013.2282416. Epub 2013 Oct 7.
3
Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons.
Med Eng Phys. 2012 May;34(4):397-408. doi: 10.1016/j.medengphy.2011.11.018. Epub 2011 Dec 15.
4
Standing stability enhancement with an intelligent powered transfemoral prosthesis.
IEEE Trans Biomed Eng. 2011 Sep;58(9):2617-24. doi: 10.1109/TBME.2011.2160173. Epub 2011 Jun 20.
5
Ambulation of people with lower-limb amputations: relationship between capacity and performance measures.
Arch Phys Med Rehabil. 2010 Apr;91(4):543-9. doi: 10.1016/j.apmr.2009.12.009.
6
Control of a powered ankle-foot prosthesis based on a neuromuscular model.
IEEE Trans Neural Syst Rehabil Eng. 2010 Apr;18(2):164-73. doi: 10.1109/TNSRE.2009.2039620. Epub 2010 Jan 12.
7
Net external energy of the biologic and prosthetic ankle during gait initiation.
Gait Posture. 2010 Jan;31(1):13-7. doi: 10.1016/j.gaitpost.2009.08.237. Epub 2009 Sep 16.
8
Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
Neural Netw. 2008 May;21(4):654-66. doi: 10.1016/j.neunet.2008.03.006. Epub 2008 Apr 26.
9
Number of pedometer-assessed steps taken per day by adults: a descriptive meta-analysis.
Phys Ther. 2007 Dec;87(12):1642-50. doi: 10.2522/ptj.20060037. Epub 2007 Oct 2.
10
Prosthetic intervention effects on activity of lower-extremity amputees.
Arch Phys Med Rehabil. 2006 May;87(5):717-22. doi: 10.1016/j.apmr.2006.02.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验