Furcht Christopher M, Buonato Janine M, Lazzara Matthew J
Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
Sci Signal. 2015 May 12;8(376):ra46. doi: 10.1126/scisignal.2005697.
Complexes of signaling proteins that are nucleated upon activation of receptor tyrosine kinases are dynamic macromolecular assemblies held together by interactions, such as the recognition of phosphotyrosines by Src homology 2 (SH2) domains. We predicted that reversible binding and phosphatase activity enable dynamic regulation of these protein complexes, which could affect signal transduction. We explored how dynamics in the interactions among the epidermal growth factor (EGF) receptor (EGFR), GRB2-associated binder protein 1 (GAB1), and SH2 domain-containing phosphatase 2 (SHP2) affected EGFR signaling output, specifically SHP2 binding to tyrosine-phosphorylated GAB1, which relieves the autoinhibition of SHP2. Among the effects of activated SHP2 is increased extracellular signal-regulated kinase (ERK) activity. We found that in H1666 lung adenocarcinoma cells, EGFR-activated Src family kinases (SFKs) counteracted repeated GAB1 dephosphorylation events and maintained the association of SHP2 with phosphorylated GAB1 at a cytosolic site distal from EGFR. A computational model predicted that an experimentally verified delay in SFK inactivation after EGFR inactivation, combined with an amplification of GAB1 phosphorylation in cells with proteins in a specific range of concentrations, enabled GAB1 phosphorylation and GAB1-SHP2 complexes to persist longer than EGFR phosphorylation persisted in response to EGF. This SFK-dependent mechanism was specific to EGFR and did not occur in response to activation of the receptor tyrosine kinase c-MET. Thus, our results quantitatively describe a regulatory mechanism used by some receptor tyrosine kinases to remotely control the duration of a signal by regulating the persistence of a signaling protein complex.
在受体酪氨酸激酶激活时形成的信号蛋白复合物是通过相互作用结合在一起的动态大分子组装体,例如Src同源2(SH2)结构域对磷酸酪氨酸的识别。我们预测,可逆结合和磷酸酶活性能够对这些蛋白质复合物进行动态调节,这可能会影响信号转导。我们探究了表皮生长因子(EGF)受体(EGFR)、GRB2相关结合蛋白1(GAB1)和含SH2结构域的磷酸酶2(SHP2)之间相互作用的动态变化如何影响EGFR信号输出,特别是SHP2与酪氨酸磷酸化的GAB1的结合,这种结合可解除SHP2的自身抑制。激活的SHP2的作用之一是增加细胞外信号调节激酶(ERK)的活性。我们发现,在H1666肺腺癌细胞中,EGFR激活的Src家族激酶(SFK)抵消了GAB1反复的去磷酸化事件,并在远离EGFR的胞质位点维持SHP2与磷酸化GAB1的结合。一个计算模型预测,EGFR失活后SFK失活的实验验证延迟,与特定浓度范围内蛋白质的细胞中GAB1磷酸化的放大相结合,使得GAB1磷酸化和GAB1-SHP2复合物持续的时间比EGFR磷酸化对EGF反应持续的时间更长。这种依赖SFK的机制是EGFR特有的,对受体酪氨酸激酶c-MET的激活没有反应。因此,我们的结果定量描述了一些受体酪氨酸激酶通过调节信号蛋白复合物的持久性来远程控制信号持续时间的调节机制。