Suppr超能文献

lpNet:一种用于重构信号转导网络的线性规划方法。

lpNet: a linear programming approach to reconstruct signal transduction networks.

机构信息

Institute for Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany and.

Institute for Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany and Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.

出版信息

Bioinformatics. 2015 Oct 1;31(19):3231-3. doi: 10.1093/bioinformatics/btv327. Epub 2015 May 29.

Abstract

UNLABELLED

With the widespread availability of high-throughput experimental technologies it has become possible to study hundreds to thousands of cellular factors simultaneously, such as coding- or non-coding mRNA or protein concentrations. Still, extracting information about the underlying regulatory or signaling interactions from these data remains a difficult challenge. We present a flexible approach towards network inference based on linear programming. Our method reconstructs the interactions of factors from a combination of perturbation/non-perturbation and steady-state/time-series data. We show both on simulated and real data that our methods are able to reconstruct the underlying networks fast and efficiently, thus shedding new light on biological processes and, in particular, into disease's mechanisms of action. We have implemented the approach as an R package available through bioconductor.

AVAILABILITY AND IMPLEMENTATION

This R package is freely available under the Gnu Public License (GPL-3) from bioconductor.org (http://bioconductor.org/packages/release/bioc/html/lpNet.html) and is compatible with most operating systems (Windows, Linux, Mac OS) and hardware architectures.

CONTACT

bettina.knapp@helmholtz-muenchen.de

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

未加标签

随着高通量实验技术的广泛应用,现在已经可以同时研究成百上千的细胞因子,如编码或非编码的 mRNA 或蛋白质浓度。然而,从这些数据中提取关于潜在调控或信号相互作用的信息仍然是一个具有挑战性的难题。我们提出了一种基于线性规划的灵活的网络推断方法。我们的方法可以从扰动/非扰动和稳态/时间序列数据的组合中重建因子的相互作用。我们在模拟和真实数据上都表明,我们的方法能够快速有效地重建基础网络,从而为生物过程提供新的见解,特别是对疾病的作用机制。我们已经将该方法实现为一个可通过 bioconductor 使用的 R 包。

可用性和实现

该 R 包根据 Gnu 公共许可证(GPL-3)免费提供,可从 bioconductor.org(http://bioconductor.org/packages/release/bioc/html/lpNet.html)获得,与大多数操作系统(Windows、Linux、Mac OS)和硬件架构兼容。

联系人

betina.knapp@helmholtz-muenchen.de

补充信息

补充数据可在生物信息学在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验