Suppr超能文献

为肺癌筛查选择高危个体:对德国EPIC队列中现有风险模型和资格标准的前瞻性评估

Selecting High-Risk Individuals for Lung Cancer Screening: A Prospective Evaluation of Existing Risk Models and Eligibility Criteria in the German EPIC Cohort.

作者信息

Li Kuanrong, Hüsing Anika, Sookthai Disorn, Bergmann Manuela, Boeing Heiner, Becker Nikolaus, Kaaks Rudolf

机构信息

Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.

出版信息

Cancer Prev Res (Phila). 2015 Sep;8(9):777-85. doi: 10.1158/1940-6207.CAPR-14-0424. Epub 2015 Jun 15.

Abstract

Lung cancer risk prediction models are considered more accurate than the eligibility criteria based on age and smoking in identification of high-risk individuals for screening. We externally validated four lung cancer risk prediction models (Bach, Spitz, LLP, and PLCO(M2012)) among 20,700 ever smokers in the EPIC-Germany cohort. High-risk subjects were identified using the eligibility criteria applied in clinical trials (NELSON/LUSI, DLCST, ITALUNG, DANTE, and NLST) and the four risk prediction models. Sensitivity, specificity, and positive predictive value (PPV) were calculated based on the lung cancers diagnosed in the first 5 years of follow-up. Decision curve analysis was performed to compare net benefits. The number of high-risk subjects identified by the eligibility criteria ranged from 3,409 (NELSON/LUSI) to 1,458 (NLST). Among the eligibility criteria, the DLCST produced the highest sensitivity (64.13%), whereas the NLST produced the highest specificity (93.13%) and PPV (2.88%). The PLCO(M2012) model showed the best performance in external validation (C-index: 0.81; 95% CI, 0.76-0.86; E/O: 1.03; 95% CI, 0.87-1.23) and the highest sensitivity, specificity, and PPV, but the superiority over the Bach model and the LLP model was modest. All the models but the Spitz model showed greater net benefit over the full range of risk estimates than the eligibility criteria. We concluded that all of the lung cancer risk prediction models apart from the Spitz model have a similar accuracy to identify high-risk individuals for screening, but in general outperform the eligibility criteria used in the screening trials.

摘要

肺癌风险预测模型在识别筛查高危个体方面被认为比基于年龄和吸烟情况的入选标准更为准确。我们在EPIC-德国队列中的20700名既往吸烟者中对四种肺癌风险预测模型(巴赫模型、斯皮茨模型、LLP模型和PLCO(M2012)模型)进行了外部验证。使用临床试验(NELSON/LUSI、DLCST、ITALUNG、DANTE和NLST)中应用的入选标准以及这四种风险预测模型来识别高危受试者。根据随访前5年诊断出的肺癌计算敏感性、特异性和阳性预测值(PPV)。进行决策曲线分析以比较净效益。入选标准识别出的高危受试者数量从3409人(NELSON/LUSI)到1458人(NLST)不等。在入选标准中,DLCST的敏感性最高(64.13%),而NLST的特异性最高(93.13%)和PPV最高(2.88%)。PLCO(M2012)模型在外部验证中表现最佳(C指数:0.81;95%置信区间,0.76 - 0.86;E/O:1.03;95%置信区间,0.87 - 1.23),且敏感性、特异性和PPV最高,但相对于巴赫模型和LLP模型的优势并不明显。除斯皮茨模型外,所有模型在整个风险估计范围内均显示出比入选标准更大的净效益。我们得出结论,除斯皮茨模型外,所有肺癌风险预测模型在识别筛查高危个体方面具有相似的准确性,但总体上优于筛查试验中使用的入选标准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验