Till Andreas, Saito Rintaro, Merkurjev Daria, Liu Jing-Jing, Syed Gulam Hussain, Kolnik Martin, Siddiqui Aleem, Glas Martin, Scheffler Björn, Ideker Trey, Subramani Suresh
a Section of Molecular Biology; University of California San Diego ; La Jolla , CA USA.
b The San Diego Center for Systems Biology ; La Jolla , CA USA.
Autophagy. 2015;11(9):1652-67. doi: 10.1080/15548627.2015.1059558.
All eukaryotic cells utilize autophagy for protein and organelle turnover, thus assuring subcellular quality control, homeostasis, and survival. In order to address recent advances in identification of human autophagy associated genes, and to describe autophagy on a system-wide level, we established an autophagy-centered gene interaction network by merging various primary data sets and by retrieving respective interaction data. The resulting network ('AXAN') was analyzed with respect to subnetworks, e.g. the prime gene subnetwork (including the core machinery, signaling pathways and autophagy receptors) and the transcription subnetwork. To describe aspects of evolution within this network, we assessed the presence of protein orthologs across 99 eukaryotic model organisms. We visualized evolutionary trends for prime gene categories and evolutionary tracks for selected AXAN genes. This analysis confirms the eukaryotic origin of autophagy core genes while it points to a diverse evolutionary history of autophagy receptors. Next, we used module identification to describe the functional anatomy of the network at the level of pathway modules. In addition to obvious pathways (e.g., lysosomal degradation, insulin signaling) our data unveil the existence of context-related modules such as Rho GTPase signaling. Last, we used a tripartite, image-based RNAi - screen to test candidate genes predicted to play a role in regulation of autophagy. We verified the Rho GTPase, CDC42, as a novel regulator of autophagy-related signaling. This study emphasizes the applicability of system-wide approaches to gain novel insights into a complex biological process and to describe the human autophagy pathway at a hitherto unprecedented level of detail.
所有真核细胞都利用自噬进行蛋白质和细胞器更新,从而确保亚细胞质量控制、内稳态和细胞存活。为了阐述人类自噬相关基因鉴定方面的最新进展,并在全系统层面描述自噬,我们通过整合各种原始数据集并检索相应的相互作用数据,建立了一个以自噬为中心的基因相互作用网络。对所得网络(“AXAN”)进行了子网分析,例如主要基因子网(包括核心机制、信号通路和自噬受体)和转录子网。为了描述该网络内的进化方面,我们评估了99种真核模式生物中蛋白质直系同源物的存在情况。我们可视化了主要基因类别的进化趋势以及选定AXAN基因的进化轨迹。该分析证实了自噬核心基因的真核起源,同时指出了自噬受体多样的进化历史。接下来,我们使用模块鉴定来描述网络在通路模块层面的功能结构。除了明显的通路(如溶酶体降解、胰岛素信号传导),我们的数据还揭示了诸如Rho GTPase信号传导等与背景相关模块的存在。最后,我们使用基于图像的三方RNAi筛选来测试预测在自噬调节中起作用的候选基因。我们验证了Rho GTPase CDC42是自噬相关信号传导的新型调节因子。这项研究强调了全系统方法在深入了解复杂生物学过程以及以前所未有的详细程度描述人类自噬途径方面的适用性。