Suppr超能文献

神经活动和钙/钙调蛋白依赖性蛋白激酶II保护衰老秀丽隐杆线虫神经元中的线粒体免于碎片化。

Neural activity and CaMKII protect mitochondria from fragmentation in aging Caenorhabditis elegans neurons.

作者信息

Jiang Hao-Ching, Hsu Jiun-Min, Yen Chien-Ping, Chao Chi-Chao, Chen Ruey-Hwa, Pan Chun-Liang

机构信息

Institute of Molecular Medicine, National Taiwan University, 10002 Taipei, Taiwan;

Department of Neurology, National Taiwan University Hospital, 10002 Taipei, Taiwan;

出版信息

Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8768-73. doi: 10.1073/pnas.1501831112. Epub 2015 Jun 29.

Abstract

Decline in mitochondrial morphology and function is a hallmark of neuronal aging. Here we report that progressive mitochondrial fragmentation is a common manifestation of aging Caenorhabditis elegans neurons and body wall muscles. We show that sensory-evoked activity was essential for maintaining neuronal mitochondrial morphology, and this activity-dependent mechanism required the Degenerin/ENaC sodium channel MEC-4, the L-type voltage-gated calcium channel EGL-19, and the Ca/calmodulin-dependent kinase II (CaMKII) UNC-43. Importantly, UNC-43 phosphorylated and inhibited the dynamin-related protein (DRP)-1, which was responsible for excessive mitochondrial fragmentation in neurons that lacked sensory-evoked activity. Moreover, enhanced activity in the aged neurons ameliorated mitochondrial fragmentation. These findings provide a detailed description of mitochondrial behavior in aging neurons and identify activity-dependent DRP-1 phosphorylation by CaMKII as a key mechanism in neuronal mitochondrial maintenance.

摘要

线粒体形态和功能的衰退是神经元衰老的一个标志。在此,我们报告渐进性线粒体碎片化是衰老的秀丽隐杆线虫神经元和体壁肌肉的常见表现。我们表明,感觉诱发活动对于维持神经元线粒体形态至关重要,并且这种活动依赖性机制需要退化素/上皮钠通道MEC-4、L型电压门控钙通道EGL-19以及钙/钙调蛋白依赖性激酶II(CaMKII)UNC-43。重要的是,UNC-43磷酸化并抑制了动力相关蛋白(DRP)-1,DRP-1导致缺乏感觉诱发活动的神经元中过度的线粒体碎片化。此外,衰老神经元中增强的活动改善了线粒体碎片化。这些发现详细描述了衰老神经元中线粒体的行为,并确定CaMKII介导的活动依赖性DRP-1磷酸化是神经元线粒体维持的关键机制。

相似文献

1
Neural activity and CaMKII protect mitochondria from fragmentation in aging Caenorhabditis elegans neurons.
Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8768-73. doi: 10.1073/pnas.1501831112. Epub 2015 Jun 29.
3
Neuronal Activity and CaMKII Regulate Kinesin-Mediated Transport of Synaptic AMPARs.
Neuron. 2015 Apr 22;86(2):457-74. doi: 10.1016/j.neuron.2015.03.011. Epub 2015 Apr 2.
4
Mitochondrial stress extends lifespan in C. elegans through neuronal hormesis.
Exp Gerontol. 2014 Aug;56:89-98. doi: 10.1016/j.exger.2014.03.026. Epub 2014 Apr 4.
7
DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans.
Nature. 2005 Feb 17;433(7027):754-60. doi: 10.1038/nature03316.
8
The role of regulatory domain interactions in UNC-43 CaMKII localization and trafficking.
J Cell Sci. 2005 Aug 1;118(Pt 15):3327-38. doi: 10.1242/jcs.02457.

引用本文的文献

1
Cigarette Tar Enhanced ECs Pyroptosis via CAMKII/Drp1/mtDNA: Novel Insight Into the Mechanism of Plaque Erosion.
JACC Basic Transl Sci. 2025 Aug;10(8):101283. doi: 10.1016/j.jacbts.2025.03.015.
2
Neuron-periphery mitochondrial stress communication in aging and diseases.
Life Med. 2022 Nov 11;1(2):168-178. doi: 10.1093/lifemedi/lnac051. eCollection 2022 Oct.
3
4
Impaired mitophagosome-lysosome fusion mediates olanzapine-induced aging.
Aging Cell. 2023 Nov;22(11):e14003. doi: 10.1111/acel.14003. Epub 2023 Oct 13.
5
Pleiotropic effects of mitochondria in aging.
Nat Aging. 2022 Mar;2(3):199-213. doi: 10.1038/s43587-022-00191-2. Epub 2022 Mar 17.
7
Muscle PARP1 inhibition extends lifespan through AMPKα PARylation and activation in .
Proc Natl Acad Sci U S A. 2023 Mar 28;120(13):e2213857120. doi: 10.1073/pnas.2213857120. Epub 2023 Mar 22.
8
Exercise preserves physical fitness during aging through AMPK and mitochondrial dynamics.
Proc Natl Acad Sci U S A. 2023 Jan 10;120(2):e2204750120. doi: 10.1073/pnas.2204750120. Epub 2023 Jan 3.
9
BAM15 Relieves Neurodegeneration in Aged and Extends Lifespan.
Metabolites. 2022 Nov 17;12(11):1129. doi: 10.3390/metabo12111129.
10
as a Model for the Effects of Phytochemicals on Mitochondria and Aging.
Biomolecules. 2022 Oct 24;12(11):1550. doi: 10.3390/biom12111550.

本文引用的文献

1
Mitochondrial control by DRP1 in brain tumor initiating cells.
Nat Neurosci. 2015 Apr;18(4):501-10. doi: 10.1038/nn.3960. Epub 2015 Mar 2.
2
Neuronal aging: learning from C. elegans.
J Mol Signal. 2013 Dec 10;8(1):14. doi: 10.1186/1750-2187-8-14.
5
An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast.
Nature. 2012 Dec 13;492(7428):261-5. doi: 10.1038/nature11654. Epub 2012 Nov 21.
6
Fusion and fission: interlinked processes critical for mitochondrial health.
Annu Rev Genet. 2012;46:265-87. doi: 10.1146/annurev-genet-110410-132529. Epub 2012 Aug 29.
7
Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system.
J Neurosci. 2012 Jun 27;32(26):8778-90. doi: 10.1523/JNEUROSCI.1494-11.2012.
8
Activity-dependent neurotransmitter respecification.
Nat Rev Neurosci. 2012 Jan 18;13(2):94-106. doi: 10.1038/nrn3154.
9
Spontaneous age-related neurite branching in Caenorhabditis elegans.
J Neurosci. 2011 Jun 22;31(25):9279-88. doi: 10.1523/JNEUROSCI.6606-10.2011.
10
Genetic analysis of age-dependent defects of the Caenorhabditis elegans touch receptor neurons.
Proc Natl Acad Sci U S A. 2011 May 31;108(22):9274-9. doi: 10.1073/pnas.1011711108. Epub 2011 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验