Park Seonhwa, Kim Jihye, Ock Hwiseok, Dutta Gorachand, Seo Jeongwook, Shin Eui-Cheol, Yang Haesik
Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea.
Analyst. 2015 Aug 21;140(16):5481-7. doi: 10.1039/c5an01086a.
Washing processes cannot fully remove interfering species that remain on biosensing surfaces when a sample solution contains a high concentration of interfering species. This study reports an immunosensing scheme employing electroreduction-based electrochemical-chemical (EC) redox cycling that allows sensitive detection of vaccinia virus (VV) in a solution containing a high concentration of L-ascorbic acid (AA). To obtain high signal amplification, an enzymatic reaction by β-D-galactosidase (Gal) is combined with electroreduction-based EC redox cycling by an oxidant. Among the four possible oxidants (KIO3, NaClO, Ag2O, and H2O2), KIO3 shows the highest signal-to-background ratio and is chosen. During an incubation period of 10 min, Gal converts β-D-galactopyranoside into p-aminophenol (AP), which is oxidized to p-quinone imine (QI) by KIO3. When -0.05 V vs. Ag/AgCl is applied to an immunosensing electrode, QI is reduced to AP, and the regenerated AP is then reoxidized by KIO3. The electroreduction-based EC redox cycling is induced. An indium-tin oxide electrode modified with reduced graphene oxide and an applied potential of -0.05 V are used to achieve low and reproducible background currents, slow O2 reduction, and fast electroreduction of QI. KIO3 favorably converts AA into noninterfering species during the incubation period. The detection limit for VV in commercial 50% mandarin juice (AA concentration = 0.7 mM) is 4 × 10(3) plaque-forming unit (PFU) per mL. The new EC redox cycling scheme is promising for sensitive detection of proteins, viruses, and bacteria in solutions containing high concentrations of AA.
当样品溶液中含有高浓度干扰物质时,洗涤过程无法完全去除残留在生物传感表面的干扰物质。本研究报告了一种采用基于电还原的电化学-化学(EC)氧化还原循环的免疫传感方案,该方案能够在含有高浓度L-抗坏血酸(AA)的溶液中灵敏检测痘苗病毒(VV)。为了实现高信号放大,将β-D-半乳糖苷酶(Gal)的酶促反应与氧化剂介导的基于电还原的EC氧化还原循环相结合。在四种可能的氧化剂(KIO3、NaClO、Ag2O和H2O2)中,KIO3显示出最高的信噪比,因此被选用。在10分钟的孵育期内,Gal将β-D-吡喃半乳糖苷转化为对氨基苯酚(AP),AP被KIO3氧化为对醌亚胺(QI)。当对免疫传感电极施加相对于Ag/AgCl为-0.05 V的电位时,QI被还原为AP,再生的AP随后被KIO3再次氧化。由此诱导了基于电还原的EC氧化还原循环。使用修饰有还原氧化石墨烯的氧化铟锡电极和-0.05 V的施加电位,以实现低且可重复的背景电流、缓慢的O2还原以及QI的快速电还原。在孵育期内,KIO3能顺利地将AA转化为无干扰物质。市售50%柑橘汁(AA浓度 = 0.7 mM)中VV的检测限为每毫升4×10(3) 蚀斑形成单位(PFU)。这种新的EC氧化还原循环方案有望用于灵敏检测含有高浓度AA的溶液中的蛋白质、病毒和细菌。