Suppr超能文献

蒺藜苜蓿根转录组的深度测序揭示了结瘤因子与乙烯信号之间大量且早期的相互作用。

Deep Sequencing of the Medicago truncatula Root Transcriptome Reveals a Massive and Early Interaction between Nodulation Factor and Ethylene Signals.

作者信息

Larrainzar Estíbaliz, Riely Brendan K, Kim Sang Cheol, Carrasquilla-Garcia Noelia, Yu Hee-Ju, Hwang Hyun-Ju, Oh Mijin, Kim Goon Bo, Surendrarao Anandkumar K, Chasman Deborah, Siahpirani Alireza F, Penmetsa Ramachandra V, Lee Gang-Seob, Kim Namshin, Roy Sushmita, Mun Jeong-Hwan, Cook Douglas R

机构信息

Department of Plant Pathology (E.L., B.K.R., N.C.-G., R.V.P., D.R.C) and Plant Biology Graduate Group (A.K.S.), University of California, Davis, California 95616;Korean Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea (S.C.K., N.K.);Catholic University of Korea, Bucheon 420-743, Republic of Korea (H.-J.Y.);Rural Development Administration, Jeonju 560-500, Republic of Korea (H.-J.H., M.O., G.-S.L.);Myongji University, Yongin 449-728, Republic of Korea (G.B.K., J.-H.M.);Wisconsin Institute for Discovery, Madison, Wisconsin 53715 (D.C., S.R.); andDepartment of Computer Sciences (A.F.S.) and Department of Biostatistics and Medical Informatics (S.R.), University of Wisconsin, Madison, Wisconsin 53715.

Department of Plant Pathology (E.L., B.K.R., N.C.-G., R.V.P., D.R.C) and Plant Biology Graduate Group (A.K.S.), University of California, Davis, California 95616;Korean Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea (S.C.K., N.K.);Catholic University of Korea, Bucheon 420-743, Republic of Korea (H.-J.Y.);Rural Development Administration, Jeonju 560-500, Republic of Korea (H.-J.H., M.O., G.-S.L.);Myongji University, Yongin 449-728, Republic of Korea (G.B.K., J.-H.M.);Wisconsin Institute for Discovery, Madison, Wisconsin 53715 (D.C., S.R.); andDepartment of Computer Sciences (A.F.S.) and Department of Biostatistics and Medical Informatics (S.R.), University of Wisconsin, Madison, Wisconsin 53715

出版信息

Plant Physiol. 2015 Sep;169(1):233-65. doi: 10.1104/pp.15.00350. Epub 2015 Jul 14.

Abstract

The legume-rhizobium symbiosis is initiated through the activation of the Nodulation (Nod) factor-signaling cascade, leading to a rapid reprogramming of host cell developmental pathways. In this work, we combine transcriptome sequencing with molecular genetics and network analysis to quantify and categorize the transcriptional changes occurring in roots of Medicago truncatula from minutes to days after inoculation with Sinorhizobium medicae. To identify the nature of the inductive and regulatory cues, we employed mutants with absent or decreased Nod factor sensitivities (i.e. Nodulation factor perception and Lysine motif domain-containing receptor-like kinase3, respectively) and an ethylene (ET)-insensitive, Nod factor-hypersensitive mutant (sickle). This unique data set encompasses nine time points, allowing observation of the symbiotic regulation of diverse biological processes with high temporal resolution. Among the many outputs of the study is the early Nod factor-induced, ET-regulated expression of ET signaling and biosynthesis genes. Coupled with the observation of massive transcriptional derepression in the ET-insensitive background, these results suggest that Nod factor signaling activates ET production to attenuate its own signal. Promoter:β-glucuronidase fusions report ET biosynthesis both in root hairs responding to rhizobium as well as in meristematic tissue during nodule organogenesis and growth, indicating that ET signaling functions at multiple developmental stages during symbiosis. In addition, we identified thousands of novel candidate genes undergoing Nod factor-dependent, ET-regulated expression. We leveraged the power of this large data set to model Nod factor- and ET-regulated signaling networks using MERLIN, a regulatory network inference algorithm. These analyses predict key nodes regulating the biological process impacted by Nod factor perception. We have made these results available to the research community through a searchable online resource.

摘要

豆科植物与根瘤菌的共生关系是通过激活结瘤(Nod)因子信号级联反应启动的,这会导致宿主细胞发育途径的快速重编程。在这项研究中,我们将转录组测序与分子遗传学及网络分析相结合,以量化和分类在接种苜蓿中华根瘤菌后数分钟至数天内,蒺藜苜蓿根中发生的转录变化。为了确定诱导和调控线索的性质,我们使用了对Nod因子敏感性缺失或降低的突变体(即分别为结瘤因子感知突变体和含赖氨酸基序结构域的类受体激酶3突变体)以及一个乙烯(ET)不敏感、Nod因子超敏的突变体(镰刀突变体)。这个独特的数据集涵盖了九个时间点,能够以高时间分辨率观察多种生物过程的共生调控。该研究的众多成果之一是早期Nod因子诱导的、ET调控的ET信号传导和生物合成基因的表达。再加上在ET不敏感背景下观察到的大量转录去抑制现象,这些结果表明Nod因子信号传导激活ET产生以减弱其自身信号。启动子:β-葡萄糖醛酸酶融合报告基因显示,在根毛对根瘤菌的反应以及根瘤器官发生和生长过程中的分生组织中,ET都有生物合成,这表明ET信号在共生过程的多个发育阶段发挥作用。此外,我们还鉴定出了数千个经历Nod因子依赖性、ET调控表达的新候选基因。我们利用这个大数据集的优势,使用调控网络推理算法MERLIN对Nod因子和ET调控的信号网络进行建模。这些分析预测了调控受Nod因子感知影响的生物过程的关键节点。我们已通过一个可搜索的在线资源将这些结果提供给研究界。

相似文献

2
Rhizobium Lipo-chitooligosaccharide Signaling Triggers Accumulation of Cytokinins in Medicago truncatula Roots.
Mol Plant. 2015 Aug;8(8):1213-26. doi: 10.1016/j.molp.2015.03.010. Epub 2015 Mar 21.
4
Unraveling the effect of arsenic on the model Medicago-Ensifer interaction: a transcriptomic meta-analysis.
New Phytol. 2015 Jan;205(1):255-72. doi: 10.1111/nph.13009. Epub 2014 Sep 23.
5
Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula.
Plant Cell. 2008 Oct;20(10):2681-95. doi: 10.1105/tpc.108.061739. Epub 2008 Oct 17.
6
The strigolactone biosynthesis gene DWARF27 is co-opted in rhizobium symbiosis.
BMC Plant Biol. 2015 Oct 26;15:260. doi: 10.1186/s12870-015-0651-x.
10
A CDPK isoform participates in the regulation of nodule number in Medicago truncatula.
Plant J. 2006 Dec;48(6):843-56. doi: 10.1111/j.1365-313X.2006.02910.x. Epub 2006 Nov 21.

引用本文的文献

1
Peptides and Reactive Oxygen Species Regulate Root Development.
Int J Mol Sci. 2025 Mar 25;26(7):2995. doi: 10.3390/ijms26072995.
2
3
Single-nucleus transcriptomes reveal spatiotemporal symbiotic perception and early response in Medicago.
Nat Plants. 2023 Oct;9(10):1734-1748. doi: 10.1038/s41477-023-01524-8. Epub 2023 Sep 25.
4
TETRASPANIN 8-1 from plays a key role during mutualistic interactions.
Front Plant Sci. 2023 Jul 3;14:1152493. doi: 10.3389/fpls.2023.1152493. eCollection 2023.
6
The Medicago SymCEP7 hormone increases nodule number via shoots without compromising lateral root number.
Plant Physiol. 2023 Mar 17;191(3):2012-2026. doi: 10.1093/plphys/kiad012.
8
Paired receptors mediate broad-spectrum resistance to nodulation by carrying a species-specific gene.
Proc Natl Acad Sci U S A. 2022 Dec 20;119(51):e2214703119. doi: 10.1073/pnas.2214703119. Epub 2022 Dec 12.
10
The Promises, Challenges, and Opportunities of Omics for Studying the Plant Holobiont.
Microorganisms. 2022 Oct 12;10(10):2013. doi: 10.3390/microorganisms10102013.

本文引用的文献

2
A pan-cancer modular regulatory network analysis to identify common and cancer-specific network components.
Cancer Inform. 2014 Oct 28;13(Suppl 5):69-84. doi: 10.4137/CIN.S14058. eCollection 2014.
3
Nod factor receptors form heteromeric complexes and are essential for intracellular infection in medicago nodules.
Plant Cell. 2014 Oct;26(10):4188-99. doi: 10.1105/tpc.114.129502. Epub 2014 Oct 28.
4
Nodule Inception creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production.
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14607-12. doi: 10.1073/pnas.1412716111. Epub 2014 Sep 22.
5
Shoot-derived cytokinins systemically regulate root nodulation.
Nat Commun. 2014 Sep 19;5:4983. doi: 10.1038/ncomms5983.
6
Transcriptional networks leading to symbiotic nodule organogenesis.
Curr Opin Plant Biol. 2014 Aug;20:146-54. doi: 10.1016/j.pbi.2014.07.010. Epub 2014 Aug 9.
8
A miR169 isoform regulates specific NF-YA targets and root architecture in Arabidopsis.
New Phytol. 2014 Jun;202(4):1197-1211. doi: 10.1111/nph.12735. Epub 2014 Feb 17.
9
The key players of the primary root growth and development also function in lateral roots in Arabidopsis.
Plant Cell Rep. 2014 May;33(5):745-53. doi: 10.1007/s00299-014-1575-x. Epub 2014 Feb 7.
10
Microtubule array formation during root hair infection thread initiation and elongation in the Mesorhizobium-Lotus symbiosis.
Protoplasma. 2014 Sep;251(5):1099-111. doi: 10.1007/s00709-014-0618-z. Epub 2014 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验