Suppr超能文献

细胞穿透肽的抗菌和抗病毒应用

The Antimicrobial and Antiviral Applications of Cell-Penetrating Peptides.

作者信息

Pärn Kalle, Eriste Elo, Langel Ülo

机构信息

Laboratory of Molecular Biotechnology, Institute of Technology, Tartu University, Nooruse 1/517, Tartu, 50411, Estonia,

出版信息

Methods Mol Biol. 2015;1324:223-45. doi: 10.1007/978-1-4939-2806-4_15.

Abstract

Over the past two decades, cell-penetrating peptides (CPPs) have become increasingly popular both in research and in application. There have been numerous studies on the physiochemical characteristics and behavior of CPPs in various environments; likewise, the mechanisms of entry and delivery capabilities of these peptides have also been extensively researched. Besides the fundamental issues, there is an enormous interest in the delivery capabilities of the peptides as the family of CPPs is a promising and mostly non-toxic delivery vector candidate for numerous medical applications such as gene silencing, transgene delivery, and splice correction. Lately, however, there has been an emerging field of study besides the high-profile gene therapy applications-the use of peptides and CPPs to combat various infections caused by harmful bacteria, fungi, and viruses.In this chapter, we aim to provide a short overview of the history and properties of CPPs which is followed by more thorough descriptions of antimicrobial and antiviral peptides. To achieve this, we analyze the origin of such peptides, give an overview of the mechanisms of action and discuss the various practical applications which are ongoing or have been suggested based on research.

摘要

在过去二十年中,细胞穿透肽(CPPs)在研究和应用方面都越来越受欢迎。关于CPPs在各种环境中的物理化学特性和行为已有大量研究;同样,这些肽的进入机制和递送能力也得到了广泛研究。除了这些基本问题外,人们对肽的递送能力也有着浓厚兴趣,因为CPPs家族是众多医学应用(如基因沉默、转基因递送和剪接校正)中一个有前景且大多无毒的递送载体候选物。然而,最近除了备受瞩目的基因治疗应用外,还出现了一个新兴研究领域——利用肽和CPPs对抗由有害细菌、真菌和病毒引起的各种感染。在本章中,我们旨在简要概述CPPs的历史和特性,随后更全面地描述抗菌和抗病毒肽。为实现这一目标,我们分析此类肽的起源,概述其作用机制,并讨论基于研究正在进行或已被提出的各种实际应用。

相似文献

1
The Antimicrobial and Antiviral Applications of Cell-Penetrating Peptides.
Methods Mol Biol. 2015;1324:223-45. doi: 10.1007/978-1-4939-2806-4_15.
2
Peptides as the next generation of anti-infectives.
Future Med Chem. 2013 Mar;5(3):315-37. doi: 10.4155/fmc.12.213.
3
Antimicrobial peptides with cell-penetrating peptide properties and vice versa.
Eur Biophys J. 2011 Apr;40(4):387-97. doi: 10.1007/s00249-011-0682-7. Epub 2011 Feb 19.
4
Perspectives for clinical use of engineered human host defense antimicrobial peptides.
FEMS Microbiol Rev. 2017 May 1;41(3):323-342. doi: 10.1093/femsre/fux012.
5
Application of Cell Penetrating Peptides as a Promising Drug Carrier to Combat Viral Infections.
Mol Biotechnol. 2023 Sep;65(9):1387-1402. doi: 10.1007/s12033-023-00679-1. Epub 2023 Jan 31.
6
Cyclic Cell-Penetrating Peptides as Efficient Intracellular Drug Delivery Tools.
Mol Pharm. 2019 Sep 3;16(9):3727-3743. doi: 10.1021/acs.molpharmaceut.9b00633. Epub 2019 Aug 8.
7
Current state of a dual behaviour of antimicrobial peptides-Therapeutic agents and promising delivery vectors.
Chem Biol Drug Des. 2017 Dec;90(6):1079-1093. doi: 10.1111/cbdd.13031. Epub 2017 Jun 28.
8
Human Oral Defensins Antimicrobial Peptides: A Future Promising Antimicrobial Drug.
Curr Pharm Des. 2018;24(10):1130-1137. doi: 10.2174/1381612824666180403114615.
9
Peptide chemistry encounters nanomedicine: recent applications and upcoming scenarios in cancer.
Future Med Chem. 2018 Aug 1;10(16):1877-1880. doi: 10.4155/fmc-2018-0182. Epub 2018 Jun 20.
10
The therapeutic applications of antimicrobial peptides (AMPs): a patent review.
J Microbiol. 2017 Jan;55(1):1-12. doi: 10.1007/s12275-017-6452-1. Epub 2016 Dec 30.

引用本文的文献

3
Diversity and Mechanisms of Action of Plant, Animal, and Human Antimicrobial Peptides.
Antibiotics (Basel). 2024 Feb 21;13(3):202. doi: 10.3390/antibiotics13030202.
4
Milk Antiviral Proteins and Derived Peptides against Zoonoses.
Int J Mol Sci. 2024 Feb 3;25(3):1842. doi: 10.3390/ijms25031842.
5
Toxicity Studies of Cardiac-Targeting Peptide Reveal a Robust Safety Profile.
Pharmaceutics. 2024 Jan 4;16(1):73. doi: 10.3390/pharmaceutics16010073.
7
Antiviral Peptide-Based Conjugates: State of the Art and Future Perspectives.
Pharmaceutics. 2023 Jan 20;15(2):357. doi: 10.3390/pharmaceutics15020357.
8
Cell-Penetrating Antimicrobial Peptides with Anti-Infective Activity against Intracellular Pathogens.
Antibiotics (Basel). 2022 Dec 8;11(12):1772. doi: 10.3390/antibiotics11121772.
9
Screening for effective cell-penetrating peptides with minimal impact on epithelial cells and gut commensals .
Front Pharmacol. 2022 Nov 2;13:1049324. doi: 10.3389/fphar.2022.1049324. eCollection 2022.

本文引用的文献

1
Cell-penetrating, dimeric α-helical peptides: nanomolar inhibitors of HIV-1 transcription.
Angew Chem Int Ed Engl. 2014 Sep 15;53(38):10086-9. doi: 10.1002/anie.201404684. Epub 2014 Jul 23.
2
A cell-penetrating antibody fragment against HIV-1 Rev has high antiviral activity: characterization of the paratope.
J Biol Chem. 2014 Jul 18;289(29):20222-33. doi: 10.1074/jbc.M114.581090. Epub 2014 May 30.
3
Penetration of milk-derived antimicrobial peptides into phospholipid monolayers as model biomembranes.
Biochem Res Int. 2013;2013:914540. doi: 10.1155/2013/914540. Epub 2013 Dec 17.
4
Antimicrobial peptides.
Pharmaceuticals (Basel). 2013 Nov 28;6(12):1543-75. doi: 10.3390/ph6121543.
5
Dual-acting stapled peptides target both HIV-1 entry and assembly.
Retrovirology. 2013 Nov 15;10:136. doi: 10.1186/1742-4690-10-136.
6
A peptide targeted against phosphoprotein and leader RNA interaction inhibits growth of Chandipura virus -- an emerging rhabdovirus.
Antiviral Res. 2013 Nov;100(2):346-55. doi: 10.1016/j.antiviral.2013.09.003. Epub 2013 Sep 13.
7
Humanized-VH/VHH that inhibit HCV replication by interfering with the virus helicase activity.
J Virol Methods. 2013 Dec;194(1-2):289-99. doi: 10.1016/j.jviromet.2013.08.032. Epub 2013 Sep 12.
8
An investigative peptide-acyclovir combination to control herpes simplex virus type 1 ocular infection.
Invest Ophthalmol Vis Sci. 2013 Sep 27;54(9):6373-81. doi: 10.1167/iovs.13-12832.
10
LAMP: A Database Linking Antimicrobial Peptides.
PLoS One. 2013 Jun 18;8(6):e66557. doi: 10.1371/journal.pone.0066557. Print 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验