Suppr超能文献

先进成像技术。内吞作用和细胞骨架动力学的超分辨结构光照明显微成像。

ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics.

作者信息

Li Dong, Shao Lin, Chen Bi-Chang, Zhang Xi, Zhang Mingshu, Moses Brian, Milkie Daniel E, Beach Jordan R, Hammer John A, Pasham Mithun, Kirchhausen Tomas, Baird Michelle A, Davidson Michael W, Xu Pingyong, Betzig Eric

机构信息

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.

Key Laboratory of RNA Biology and Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China.

出版信息

Science. 2015 Aug 28;349(6251):aab3500. doi: 10.1126/science.aab3500.

Abstract

Super-resolution fluorescence microscopy is distinct among nanoscale imaging tools in its ability to image protein dynamics in living cells. Structured illumination microscopy (SIM) stands out in this regard because of its high speed and low illumination intensities, but typically offers only a twofold resolution gain. We extended the resolution of live-cell SIM through two approaches: ultrahigh numerical aperture SIM at 84-nanometer lateral resolution for more than 100 multicolor frames, and nonlinear SIM with patterned activation at 45- to 62-nanometer resolution for approximately 20 to 40 frames. We applied these approaches to image dynamics near the plasma membrane of spatially resolved assemblies of clathrin and caveolin, Rab5a in early endosomes, and α-actinin, often in relationship to cortical actin. In addition, we examined mitochondria, actin, and the Golgi apparatus dynamics in three dimensions.

摘要

超分辨率荧光显微镜在纳米级成像工具中独具特色,能够对活细胞中的蛋白质动态进行成像。结构光照明显微镜(SIM)在这方面表现突出,因其速度快且照明强度低,但通常仅能将分辨率提高两倍。我们通过两种方法扩展了活细胞SIM的分辨率:一种是具有84纳米横向分辨率的超高数值孔径SIM,可用于超过100个多色帧的成像;另一种是具有图案激活功能的非线性SIM,分辨率为45至62纳米,可用于大约20至40个帧的成像。我们应用这些方法对网格蛋白和小窝蛋白的空间分辨组装体、早期内体中的Rab5a以及α-辅肌动蛋白(通常与皮质肌动蛋白相关)的质膜附近动态进行成像。此外,我们还对线粒体、肌动蛋白和高尔基体的三维动态进行了研究。

相似文献

2
Comment on "Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics".
Science. 2016 Apr 29;352(6285):527. doi: 10.1126/science.aad7983. Epub 2016 Apr 28.
3
Response to Comment on "Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics".
Science. 2016 Apr 29;352(6285):527. doi: 10.1126/science.aad8396. Epub 2016 Apr 28.
4
Recent advancements in structured-illumination microscopy toward live-cell imaging.
Microscopy (Oxf). 2015 Aug;64(4):237-49. doi: 10.1093/jmicro/dfv034. Epub 2015 Jun 30.
5
Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy.
Science. 2008 Feb 8;319(5864):810-3. doi: 10.1126/science.1153529. Epub 2008 Jan 3.
6
SIMply Better Resolution in Live Cells.
Trends Cell Biol. 2015 Nov;25(11):636-638. doi: 10.1016/j.tcb.2015.09.007. Epub 2015 Oct 11.
7
A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis.
Mol Biol Cell. 2005 Feb;16(2):964-75. doi: 10.1091/mbc.e04-09-0774. Epub 2004 Dec 15.
8
Adhesion structures and their cytoskeleton-membrane interactions at podosomes of osteoclasts in culture.
Cell Tissue Res. 2008 Mar;331(3):625-41. doi: 10.1007/s00441-007-0552-x. Epub 2007 Dec 18.
9
Stimulated Emission Depletion (STED) Imaging of Clathrin-Mediated Endocytosis in Living Cells.
Methods Mol Biol. 2018;1847:189-195. doi: 10.1007/978-1-4939-8719-1_14.
10
Four-Channel Super-Resolution Imaging by 3-D Structured Illumination.
Methods Mol Biol. 2017;1663:79-94. doi: 10.1007/978-1-4939-7265-4_7.

引用本文的文献

1
Pushing the resolution limit of coherent diffractive imaging.
Light Sci Appl. 2025 Aug 28;14(1):298. doi: 10.1038/s41377-025-01963-2.
2
The membrane skeleton is constitutively remodeled in neurons by calcium signaling.
Science. 2025 Aug 7;389(6760):eadn6712. doi: 10.1126/science.adn6712.
3
Advances in High-Speed Structured Illumination Microscopy.
Front Phys. 2021 May;9. doi: 10.3389/fphy.2021.672555. Epub 2021 May 28.
6
Cellular optical imaging techniques: a dynamic advancing frontier.
Sci China Life Sci. 2025 Jul 16. doi: 10.1007/s11427-024-2916-5.
7
Phase-Shifting Structured Illumination with a Polarization-Encoded Metasurface.
Nano Lett. 2025 Jul 30;25(30):11696-11702. doi: 10.1021/acs.nanolett.5c02789. Epub 2025 Jul 17.
8
A gentle palette of plasma membrane dyes.
Proc Natl Acad Sci U S A. 2025 Jul 22;122(29):e2504879122. doi: 10.1073/pnas.2504879122. Epub 2025 Jul 15.
9
Optical tweeze-sectioning microscopy for 3D imaging and manipulation of suspended cells.
Sci Adv. 2025 Jul 4;11(27):eadx3900. doi: 10.1126/sciadv.adx3900. Epub 2025 Jul 2.
10
SOGO-SOFI, light-modulated super-resolution optical fluctuation imaging using only 20 raw frames for high-fidelity reconstruction.
Fundam Res. 2023 Apr 7;5(3):1025-1033. doi: 10.1016/j.fmre.2023.03.007. eCollection 2025 May.

本文引用的文献

1
Development of a reversibly switchable fluorescent protein for super-resolution optical fluctuation imaging (SOFI).
ACS Nano. 2015 Mar 24;9(3):2659-67. doi: 10.1021/nn5064387. Epub 2015 Feb 23.
2
Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution.
Science. 2014 Oct 24;346(6208):1257998. doi: 10.1126/science.1257998. Epub 2014 Oct 23.
3
Flat clathrin lattices: stable features of the plasma membrane.
Mol Biol Cell. 2014 Nov 5;25(22):3581-94. doi: 10.1091/mbc.E14-06-1154. Epub 2014 Aug 27.
4
Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles.
Nat Cell Biol. 2014 Apr;16(4):322-34. doi: 10.1038/ncb2921. Epub 2014 Mar 16.
5
CRISPR-Cas systems for editing, regulating and targeting genomes.
Nat Biotechnol. 2014 Apr;32(4):347-55. doi: 10.1038/nbt.2842. Epub 2014 Mar 2.
6
Two-color RESOLFT nanoscopy with green and red fluorescent photochromic proteins.
Chemphyschem. 2014 Mar 17;15(4):655-63. doi: 10.1002/cphc.201301016. Epub 2014 Jan 21.
7
Nanoscopy with more than 100,000 'doughnuts'.
Nat Methods. 2013 Aug;10(8):737-40. doi: 10.1038/nmeth.2556. Epub 2013 Jul 7.
8
Measuring image resolution in optical nanoscopy.
Nat Methods. 2013 Jun;10(6):557-62. doi: 10.1038/nmeth.2448. Epub 2013 Apr 28.
9
rsEGFP2 enables fast RESOLFT nanoscopy of living cells.
Elife. 2012 Dec 31;1:e00248. doi: 10.7554/eLife.00248.
10
Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy.
Nat Biotechnol. 2012 Nov;30(11):1143-8. doi: 10.1038/nbt.2375. Epub 2012 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验