Cronin Timothy W, Tziperman Eli
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138;
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11490-5. doi: 10.1073/pnas.1510937112. Epub 2015 Aug 31.
High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback--consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state--slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼ 10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the "lapse rate feedback" in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates.
近几十年来,高纬度大陆地区的变暖速度比全球其他地区快得多,尤其是在冬季,而在过去气候较为稳定的时期,大陆内部冬季保持温暖、无霜的条件一直是个长期存在的问题。我们使用一个理想化的单柱大气模型,在一系列条件下研究了极夜期间气团从高纬度海洋气团(具有规定的初始温度剖面)转变为寒冷得多的高纬度大陆气团的过程。我们发现,一种低云反馈——随着初始状态变暖,光学厚度较大的液态云持续时间显著增加——减缓了地表的辐射冷却并放大了大陆变暖。这种低云反馈使初始海洋地表气温每升高1摄氏度,大陆地表气温大约升高2摄氏度,有效抑制了北极气团的形成。当初始海洋地表气温为20℃时,地表气温降至冰点以下所需的时间非线性增加至约10天。这些结果,再加上对耦合模式比较计划第5阶段气候模型运行结果的分析,该分析表明在气候变暖时云水路径和地表云长波强迫大幅增加,这表明在人为气候变化模拟中的“递减率反馈”可能与低云对对流层下部层结的影响有关。结果还表明,光学厚度较大的层云覆盖层有助于在气候较为稳定的时期保持大陆内部冬季无霜。