Suppr超能文献

在荟萃分析中估计研究间方差及其不确定性的方法。

Methods to estimate the between-study variance and its uncertainty in meta-analysis.

作者信息

Veroniki Areti Angeliki, Jackson Dan, Viechtbauer Wolfgang, Bender Ralf, Bowden Jack, Knapp Guido, Kuss Oliver, Higgins Julian P T, Langan Dean, Salanti Georgia

机构信息

Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, East Building, Toronto, Ontario, M5B 1T8, Canada.

MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge, CB2 0SR, UK.

出版信息

Res Synth Methods. 2016 Mar;7(1):55-79. doi: 10.1002/jrsm.1164. Epub 2015 Sep 2.

Abstract

Meta-analyses are typically used to estimate the overall/mean of an outcome of interest. However, inference about between-study variability, which is typically modelled using a between-study variance parameter, is usually an additional aim. The DerSimonian and Laird method, currently widely used by default to estimate the between-study variance, has been long challenged. Our aim is to identify known methods for estimation of the between-study variance and its corresponding uncertainty, and to summarise the simulation and empirical evidence that compares them. We identified 16 estimators for the between-study variance, seven methods to calculate confidence intervals, and several comparative studies. Simulation studies suggest that for both dichotomous and continuous data the estimator proposed by Paule and Mandel and for continuous data the restricted maximum likelihood estimator are better alternatives to estimate the between-study variance. Based on the scenarios and results presented in the published studies, we recommend the Q-profile method and the alternative approach based on a 'generalised Cochran between-study variance statistic' to compute corresponding confidence intervals around the resulting estimates. Our recommendations are based on a qualitative evaluation of the existing literature and expert consensus. Evidence-based recommendations require an extensive simulation study where all methods would be compared under the same scenarios.

摘要

Meta分析通常用于估计感兴趣结局的总体/均值。然而,关于研究间变异性的推断(通常使用研究间方差参数进行建模)通常是一个额外的目标。目前默认广泛使用的DerSimonian和Laird方法来估计研究间方差,长期以来一直受到挑战。我们的目的是确定估计研究间方差及其相应不确定性的已知方法,并总结比较它们的模拟和实证证据。我们确定了16种研究间方差估计方法、7种计算置信区间的方法以及若干比较研究。模拟研究表明,对于二分数据和连续数据,Paule和Mandel提出的估计方法以及对于连续数据,限制最大似然估计方法是估计研究间方差的更好选择。根据已发表研究中呈现的情景和结果,我们推荐Q-profile方法以及基于“广义Cochran研究间方差统计量”的替代方法来计算所得估计值周围的相应置信区间。我们的建议基于对现有文献的定性评估和专家共识。基于证据的建议需要进行广泛的模拟研究,在相同情景下比较所有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c67/4950030/56dce0282b90/JRSM-7-55-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验