Suppr超能文献

跨二氧化碳条件下大豆叶片磷素对碳同化和叶绿素荧光的响应:替代电子汇、养分效率及临界浓度

Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: Alternative electron sink, nutrient efficiency and critical concentration.

作者信息

Singh Shardendu K, Reddy Vangimalla R

机构信息

Crop Systems and Global Change Laboratory, USDA-ARS, Beltsville, MD 20705, USA; Wye Research and Education Center, University of Maryland, MD, USA.

Crop Systems and Global Change Laboratory, USDA-ARS, Beltsville, MD 20705, USA.

出版信息

J Photochem Photobiol B. 2015 Oct;151:276-84. doi: 10.1016/j.jphotobiol.2015.08.021. Epub 2015 Aug 19.

Abstract

To evaluate the response of CO2 assimilation rate (PN) and various chlorophyll fluorescence (CF) parameters to phosphorus (P) nutrition, soybean plants were grown in controlled environment with sufficient (0.50mM) and deficient (0.10 and 0.01 mM) phosphate (P) supply under ambient and elevated CO2 (aCO2, 400 and eCO2, 800 μmol mol(-1), respectively). Measurements were made at ambient (21%) and low (2%) O2 concentrations. Results showed strong correlation of leaf P concentration with PN and CF parameters. The P deficiency showed parallel decreases in PN, and CF parameters including quantum efficiency (Fv'/Fm'), quantum yield of photosystem II (ΦPSII), electron transport rate (JF), and photochemical quenching (qP). The Fv'/Fm' decreased as a result of greater decline in maximal (Fm') than minimal (Fo') fluorescence. The eCO2 stimulated PN especially under higher leaf P concentrations. Low O2 also stimulated PN but only at aCO2. The photosynthetic carbon reduction (PCR, signified by PN) and photorespiratory carbon oxidation cycles (PCO, signified photorespiration as indicated by ratio of JF to gross PN and % increase in PN at 2% O2) was the major electron sinks. However, the presence of alternative electron sink was also evident as determined by the difference between the electron transport calculated from chlorophyll fluorescence and gas exchange measurements. Alternative electron sink declined at lower leaf P concentration suggesting its minor role in photochemical energy consumption, thus dissipation of the excess excitation pressure of PSII reaction center under P deficiency. The JF/PG and % increase in PN at 2 versus 21% O2 remained consistent across leaf P concentration suggesting PCO cycle as an important mechanism to dissipate excess excitation energy in P deficient leaves. The severe decline of Fv'/Fm', ΦPSII, JF and qP under P deficiency also suggested the occurrences of excess radiant energy dissipation by non-photochemical quenching mechanisms. Critical leaf P concentration (CLPC) needed to achieve 90% of the maximum value was greater for PN than CF parameters. Moreover, CLPC was always higher at eCO2 suggesting increased sensitivity of soybean to P deficiency under eCO2. An increased phosphorus utilization efficiency of PN and CF parameters was also achieved but with the expense of net CO2 assimilation in P-deficient leaves.

摘要

为了评估二氧化碳同化率(PN)和各种叶绿素荧光(CF)参数对磷(P)营养的响应,大豆植株在可控环境中生长,分别在环境二氧化碳浓度(aCO2,400 μmol mol⁻¹)和升高的二氧化碳浓度(eCO2,800 μmol mol⁻¹)下,供应充足(0.50 mM)和缺乏(0.10 mM和0.01 mM)的磷酸盐(P)。在环境氧气浓度(21%)和低氧气浓度(2%)下进行测量。结果表明叶片P浓度与PN和CF参数之间存在很强的相关性。磷缺乏导致PN以及CF参数包括量子效率(Fv'/Fm')、光系统II的量子产率(ΦPSII)、电子传递速率(JF)和光化学猝灭(qP)平行下降。Fv'/Fm'下降是由于最大荧光(Fm')的下降幅度大于最小荧光(Fo')。eCO2尤其在较高叶片P浓度下刺激了PN。低氧气浓度也刺激了PN,但仅在aCO2条件下。光合碳还原(PCR,以PN表示)和光呼吸碳氧化循环(PCO,以JF与总PN的比值以及在2%氧气浓度下PN的增加百分比表示光呼吸)是主要的电子汇。然而,通过叶绿素荧光和气体交换测量计算的电子传递之间的差异确定,替代电子汇也很明显。替代电子汇在较低叶片P浓度下下降,表明其在光化学能量消耗中的作用较小,因此在磷缺乏时PSII反应中心的过量激发压力得以消散。在不同叶片P浓度下,JF/PG以及在2%与21%氧气浓度下PN的增加百分比保持一致,表明PCO循环是磷缺乏叶片中消散过量激发能量的重要机制。磷缺乏时Fv'/Fm'、ΦPSII、JF和qP的严重下降也表明通过非光化学猝灭机制发生了过量辐射能的消散。达到最大值90%所需的临界叶片P浓度(CLPC)对于PN来说比对CF参数更高。此外,在eCO2条件下CLPC始终更高,表明在eCO2条件下大豆对磷缺乏的敏感性增加。在磷缺乏叶片中,PN和CF参数的磷利用效率也有所提高,但以净二氧化碳同化量为代价。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验