Suppr超能文献

利用DNA作为支架在脂质双层纳米盘中对多种膜蛋白进行可控共重组。

Controlled Co-reconstitution of Multiple Membrane Proteins in Lipid Bilayer Nanodiscs Using DNA as a Scaffold.

作者信息

Raschle Thomas, Lin Chenxiang, Jungmann Ralf, Shih William M, Wagner Gerhard

机构信息

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , Boston, Massachusetts 02115, United States.

Department of Cancer Biology, Dana-Farber Cancer Institute , Boston, Massachusetts 02115, United States.

出版信息

ACS Chem Biol. 2015 Nov 20;10(11):2448-54. doi: 10.1021/acschembio.5b00627. Epub 2015 Sep 21.

Abstract

Nanodiscs constitute a tool for the solubilization of membrane proteins in a lipid bilayer, thus offering a near-native membrane environment. Many membrane proteins interact with other membrane proteins; however, the co-reconstitution of multiple membrane proteins in a single nanodisc is a random process that is adversely affected by several factors, including protein aggregation. Here, we present an approach for the controlled co-reconstitution of multiple membrane proteins in a single nanodisc. The temporary attachment of designated oligonucleotides to individual membrane proteins enables the formation of stable, detergent-solubilized membrane protein complexes by base-pairing of complementary oligonucleotide sequences, thus facilitating the insertion of the membrane protein complex into nanodiscs with defined stoichiometry and composition. As a proof of principle, nanodiscs containing a heterodimeric and heterotrimeric membrane protein complex were reconstituted using a fluorescently labeled voltage-gated anion channel (VDAC) as a model system.

摘要

纳米圆盘是一种用于在脂质双分子层中溶解膜蛋白的工具,从而提供一个接近天然的膜环境。许多膜蛋白会与其他膜蛋白相互作用;然而,在单个纳米圆盘中共同重组多种膜蛋白是一个随机过程,会受到包括蛋白质聚集在内的多种因素的不利影响。在此,我们提出了一种在单个纳米圆盘中可控地共同重组多种膜蛋白的方法。将指定的寡核苷酸临时连接到单个膜蛋白上,通过互补寡核苷酸序列的碱基配对,能够形成稳定的、去污剂溶解的膜蛋白复合物,从而便于将膜蛋白复合物以确定的化学计量和组成插入到纳米圆盘中。作为原理验证,使用荧光标记的电压门控阴离子通道(VDAC)作为模型系统,重组了含有异二聚体和异三聚体膜蛋白复合物的纳米圆盘。

相似文献

1
Controlled Co-reconstitution of Multiple Membrane Proteins in Lipid Bilayer Nanodiscs Using DNA as a Scaffold.
ACS Chem Biol. 2015 Nov 20;10(11):2448-54. doi: 10.1021/acschembio.5b00627. Epub 2015 Sep 21.
2
Lipid Nanodiscs as a Tool for High-Resolution Structure Determination of Membrane Proteins by Single-Particle Cryo-EM.
Methods Enzymol. 2017;594:1-30. doi: 10.1016/bs.mie.2017.05.007. Epub 2017 Jul 19.
3
The nanodisc: a novel tool for membrane protein studies.
Biol Chem. 2009 Aug;390(8):805-14. doi: 10.1515/BC.2009.091.
4
Nanodiscs for Structural Biology in a Membranous Environment.
Chem Pharm Bull (Tokyo). 2019;67(4):321-326. doi: 10.1248/cpb.c18-00941.
5
Smaller Nanodiscs are Suitable for Studying Protein Lipid Interactions by Solution NMR.
Protein J. 2015 Jun;34(3):205-11. doi: 10.1007/s10930-015-9613-2.
6
Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins.
Biochemistry. 2007 Feb 27;46(8):2059-69. doi: 10.1021/bi602371n. Epub 2007 Jan 31.
7
Detergent-free isolation, characterization, and functional reconstitution of a tetrameric K+ channel: the power of native nanodiscs.
Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18607-12. doi: 10.1073/pnas.1416205112. Epub 2014 Dec 15.
8
Aligning nanodiscs at the air-water interface, a neutron reflectivity study.
Langmuir. 2011 Dec 20;27(24):15065-73. doi: 10.1021/la203100n. Epub 2011 Nov 22.
10
Quantifying the insertion of membrane proteins into lipid bilayer nanodiscs using a fusion protein strategy.
Biochim Biophys Acta Biomembr. 2020 Apr 1;1862(4):183190. doi: 10.1016/j.bbamem.2020.183190. Epub 2020 Jan 11.

引用本文的文献

1
CRAFTing Delivery of Membrane Proteins into Protocells using Nanodiscs.
ACS Appl Mater Interfaces. 2023 Nov 28;15(49):56689-701. doi: 10.1021/acsami.3c11894.
2
Membrane Protein Stabilization Strategies for Structural and Functional Studies.
Membranes (Basel). 2021 Feb 22;11(2):155. doi: 10.3390/membranes11020155.
4
Large Nanodiscs: A Potential Game Changer in Structural Biology of Membrane Protein Complexes and Virus Entry.
Front Bioeng Biotechnol. 2020 Jun 12;8:539. doi: 10.3389/fbioe.2020.00539. eCollection 2020.
5
Solution NMR: A powerful tool for structural and functional studies of membrane proteins in reconstituted environments.
J Biol Chem. 2019 Nov 1;294(44):15914-15931. doi: 10.1074/jbc.REV119.009178. Epub 2019 Sep 24.
6
Hydrogen-deuterium exchange mass spectrometry of membrane proteins in lipid nanodiscs.
Chem Phys Lipids. 2019 May;220:14-22. doi: 10.1016/j.chemphyslip.2019.02.007. Epub 2019 Feb 22.
7
DNA-Corralled Nanodiscs for the Structural and Functional Characterization of Membrane Proteins and Viral Entry.
J Am Chem Soc. 2018 Aug 29;140(34):10639-10643. doi: 10.1021/jacs.8b04638. Epub 2018 Aug 16.
8
Self-assembly of nanoscale particles with biosurfactants and membrane scaffold proteins.
Biotechnol Rep (Amst). 2017 Sep 1;16:1-4. doi: 10.1016/j.btre.2017.08.001. eCollection 2017 Dec.
9
Recent advances in nanodisc technology for membrane protein studies (2012-2017).
FEBS Lett. 2017 Jul;591(14):2057-2088. doi: 10.1002/1873-3468.12706. Epub 2017 Jul 6.
10
Nanodiscs in Membrane Biochemistry and Biophysics.
Chem Rev. 2017 Mar 22;117(6):4669-4713. doi: 10.1021/acs.chemrev.6b00690. Epub 2017 Feb 8.

本文引用的文献

1
Assembly of an activated rhodopsin-transducin complex in nanoscale lipid bilayers.
Biochemistry. 2014 Jan 14;53(1):127-34. doi: 10.1021/bi4012995. Epub 2013 Dec 20.
2
Production of GPCR and GPCR complexes for structure determination.
Curr Opin Struct Biol. 2013 Jun;23(3):381-92. doi: 10.1016/j.sbi.2013.04.006. Epub 2013 May 24.
3
Nanodiscs in the studies of membrane-bound cytochrome P450 enzymes.
Methods Mol Biol. 2013;987:115-27. doi: 10.1007/978-1-62703-321-3_10.
4
Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility.
Structure. 2013 Mar 5;21(3):394-401. doi: 10.1016/j.str.2013.01.005. Epub 2013 Feb 14.
5
Membrane-dependent modulation of the mTOR activator Rheb: NMR observations of a GTPase tethered to a lipid-bilayer nanodisc.
J Am Chem Soc. 2013 Mar 6;135(9):3367-70. doi: 10.1021/ja312508w. Epub 2013 Feb 20.
6
Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins.
J Am Chem Soc. 2013 Feb 6;135(5):1919-25. doi: 10.1021/ja310901f. Epub 2013 Jan 25.
8
Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae.
Nature. 2012 Sep 27;489(7417):585-9. doi: 10.1038/nature11354. Epub 2012 Sep 2.
9
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.
10
SNARE proteins: one to fuse and three to keep the nascent fusion pore open.
Science. 2012 Mar 16;335(6074):1355-9. doi: 10.1126/science.1214984.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验